LLM准确率飙升27%!谷歌DeepMind提出全新「后退一步」提示技术
LLM准确率飙升27%!谷歌DeepMind提出全新「后退一步」提示技术谷歌DeepMind全新提示技术「Step-Back Prompting」,让LLM性能拉满!
谷歌DeepMind全新提示技术「Step-Back Prompting」,让LLM性能拉满!
只需不到9行代码,就能在CPU上实现出色的LLM推理性能。英特尔® Extension for Transformer创新工具包中的LLM Runtime为诸多模型显著降低时延,且首个token和下一个token的推理速度分别提升多达40倍和2.68倍,还能满足更多场景应用需求。
Nature刊文,从学生、老师、学要、教育平台、教育工具提供商等角度详细剖析了LLM如何重塑教育事业,变革的时刻也许已经到来了。
大语言模型「拍马屁」的问题到底要怎么解决?最近,LeCun转发了Meta发布的一篇论文,研究人员提出了新的方法,有效提升了LLM回答问题的事实性和客观性。我们一起来看一下吧。
大家都在猜测,Q*是否就是「Q-learning + A*」。 AI大牛田渊栋也详细分析了一番,「Q*=Q-learning+A*」的假设,究竟有多大可能性。 与此同时,越来越多人给出判断:合成数据,就是LLM的未来。
我们都知道,大语言模型(LLM)能够以一种无需模型微调的方式从少量示例中学习,这种方式被称为「上下文学习」(In-context Learning)。这种上下文学习现象目前只能在大模型上观察到。比如 GPT-4、Llama 等大模型在非常多的领域中都表现出了杰出的性能,但还是有很多场景受限于资源或者实时性要求较高,无法使用大模型。
AI可以被定义为是变革性的风口。
小羊驼团队的新研究火了。他们开发了一种新的解码算法,可以让模型预测100个token数的速度提高1.5-2.3倍,进而加速LLM推理。
AGI 到底离我们还有多远?在 ChatGPT 引发的新一轮 AI 爆发之后,伯克利和香港大学的马毅教授领导的一个研究团队给出了自己的最新研究结果:包括 GPT-4 在内的当前 AI 系统所做的正是压缩。
大模型能否理解自己所说,Hinton和LeCun再次吵起来了。LeCun新论文证明,GPT-4回答问题准确率仅为15%,自回归模型不及人类。AI大佬的激战再次掀起。Hinton在线直接点名LeCun,说他对AI接管风险的看法对人类的影响微乎其微。 这意味着,他把自己的意见看得很重,而把许多其他同样有资格的专家的意见看得很轻