LLM可解释性的未来希望?稀疏自编码器是如何工作的,这里有一份直观说明
LLM可解释性的未来希望?稀疏自编码器是如何工作的,这里有一份直观说明简而言之:矩阵 → ReLU 激活 → 矩阵
简而言之:矩阵 → ReLU 激活 → 矩阵
为了对齐 LLM,各路研究者妙招连连。
在当前 AI 领域,大语言模型采用的主流架构是 Transformer。不过,随着 RWKV、Mamba 等架构的陆续问世,出现了一个很明显的趋势:在语言建模困惑度方面与 Transformer 较量的循环大语言模型正在快速进入人们的视线。
大模型展现出了卓越的指令跟从和任务泛化的能力,这种独特的能力源自 LLMs 在训练中使用了指令跟随数据以及人类反馈强化学习(RLHF)。
大语言模型 (LLM) 是如何解数学题的?是通过模板记忆,还是真的学会了推理思维?
在这篇文章中,笔者将讨论以下几个问题: • 什么是语义路由 • RAG 路由的不同场景
在这篇文章中,笔者将讨论以下几个问题: • 为什么要进行 query 理解 • query 理解有哪些技术(从 RAG 角度) • 各种 query 理解技术的实现(基于 LangChain)
『RAG 高效应用指南』系列将就如何提高 RAG 系统性能进行深入探讨,提供一系列具体的方法和建议。同时读者也需要记住,提高 RAG 系统性能是一个持续的过程,需要不断地评估、优化和迭代。
谷歌DeepMind推出LLM自动评估模型FLAMe系列,FLAMe-RM-24B模型在RewardBench上表现卓越,以87.8%准确率领先GPT-4o。
不同类型的数据配比如何配置:先通过小规模实验确定最优配比,然后将其应用到大模型的训练中。 Token配比结论:通用知识50%;数学与逻辑25%;代码17%;多语言8%。