
LLM仍然不能规划,刷屏的OpenAI o1远未达到饱和
LLM仍然不能规划,刷屏的OpenAI o1远未达到饱和实验证明,大模型的 System 2 能力还有待开发。
实验证明,大模型的 System 2 能力还有待开发。
提示词工程不再玄学!
在这篇文章中,笔者将讨论以下几个问题: • 为什么要进行 query 理解 • query 理解有哪些技术(从 RAG 角度) • 各种 query 理解技术的实现(基于 LangChain)
最近,Hacker News热榜上出现了一篇「声讨」LangChain的技术文章,得到了评论区网友的一致呼应。去年还火遍LLM圈的LangChain,为什么口碑逆转了?
AI正在从Copilot向Agent过渡
或许从诞生那天起,LangChain 就注定是一个口碑两极分化的产品。
检索增强生成 (RAG) 是将检索模型与生成模型结合起来,以提高生成内容的质量和相关性的一种有效的方法。RAG 的核心思想是利用大量文档或知识库来获取相关信息。各种工具支持 RAG,包括 Langchain 和 LlamaIndex。
上一期我们分享了吴恩达教授,在红杉 AI 峰会的分享内容:Agent > GPT5?吴恩达最新演讲:四种 Agent 设计范式(通俗易懂版),分享后,吴恩达教授介绍了 Harrison 大佬,即 Langchain 的作者。
现在,为了实现相同的目标,我们有两个最著名的库,即 Haystack 和 LangChain,它们可以帮助我们创建基于大语言模型的端到端应用程序或流程。
不知不觉,LangChain 已经问世一年了。作为一个开源框架,LangChain 提供了构建基于大模型的 AI 应用所需的模块和工具,大大降低了 AI 应用开发的门槛,使得任何人都可以基于 GPT-4 等大模型构建自己的创意应用。