Llama 3.1刚发布不久,Llama 4已完全投入训练中。 这几天,小扎在二季度财报会上称,Meta将用Llama 3的十倍计算量,训练下一代多模态Llama 4,预计在2025年发布。
Llama 3.1刚发布不久,Llama 4已完全投入训练中。 这几天,小扎在二季度财报会上称,Meta将用Llama 3的十倍计算量,训练下一代多模态Llama 4,预计在2025年发布。
如今一场席卷人工智能圈的“石油危机”已经出现,几乎每一家AI厂商都在竭力寻求新的语料来源,但再多的数据似乎也填不满AI大模型的胃口。更何况越来越多的内容平台意识到了手中数据的价值,纷纷开始敝帚自珍。为此,“合成数据”也成为了整个AI行业探索的新方向。
单卡搞定Llama 3.1(405B),最新大模型压缩工具来了!
不同类型的数据配比如何配置:先通过小规模实验确定最优配比,然后将其应用到大模型的训练中。 Token配比结论:通用知识50%;数学与逻辑25%;代码17%;多语言8%。
是时候用CPU通用服务器跑千亿参数大模型了!
最近一段时间开源大模型市场非常热闹,先是苹果开源了70亿参数小模型DCLM,然后是重量级的Meta的Llama 3.1 和Mistral Large 2相继开源,在多项基准测试中Llama 3.1超过了闭源SOTA模型。 不过开源派和闭源派之间的争论并没有停下来的迹象。
AI大神李沐老师时隔1年多,终于回归B站“填坑”经典论文精读系列了!
Meta、UC伯克利、NYU共同提出元奖励语言模型,给「超级对齐」指条明路:让AI自己当裁判,自我改进对齐,效果秒杀自我奖励模型。
今年的图形学顶级会议 SIGGRAPH 2024 上,老黄把扎克伯格请来了。
适逢Llama 3.1模型刚刚发布,英伟达就发表了一篇技术博客,手把手教你如何好好利用这个强大的开源模型,为领域模型或RAG系统的微调生成合成数据。