Sam Altman:Codex两小时改变我的习惯,AI的上限是"完整AI公司"
Sam Altman:Codex两小时改变我的习惯,AI的上限是"完整AI公司""我最初装上Codex时说,绝不会让它完全控制我的电脑。这句话大概坚持了两小时。"OpenAI CEO Sam Altman在Cisco AI Summit上坦承,自己现在用两台笔记本电脑工作——一台
"我最初装上Codex时说,绝不会让它完全控制我的电脑。这句话大概坚持了两小时。"OpenAI CEO Sam Altman在Cisco AI Summit上坦承,自己现在用两台笔记本电脑工作——一台
来自上海交通大学、清华大学、微软研究院、麻省理工学院(MIT)、上海 AI Lab、小红书、阿里巴巴、港科大(广州)等机构的研究团队,系统梳理了近年来大语言模型在数据准备流程中的角色变化,试图回答一个业界关心的问题:LLM 能否成为下一代数据管道的「智能语义中枢」,彻底重构数据准备的范式?
让大模型轻松处理比自身上下文窗口长两个数量级的超长文本!
近日,清华大学与星尘智能、港大、MIT 联合提出基于对比学习的隐空间动作预训练(Contrastive Latent Action Pretraining, CLAP)框架。这个框架能够将视频中提纯的运动空间与机器人的动作空间进行对齐,也就是说,机器人能够直接从视频中学习技能!
MIT天才博士一毕业,火速加盟OpenAI前CTO初创!最近,肖光烜(Guangxuan Xiao)在社交媒体官宣,刚刚完成了MIT博士学位。下一步,他将加入Thinking Machines,专注于大模型预训练的工作。
过去一段时间,我们介绍了很多小白入门级的agent框架,也介绍了包括langchain在内的很多专业级agent搭建框架。
你有没有发现,你让AI读一篇长文章,结果它读着读着就忘了前面的内容? 你让它处理一份超长的文档,结果它给出来的答案,牛头不对马嘴? 这个现象,学术界有个专门的名词,叫做上下文腐化。 这也是目前AI的通病:大模型的记忆力太差了,文章越长,模型越傻!
新年伊始,MIT CSAIL 的一纸论文在学术圈引发了不小的讨论。Alex L. Zhang 、 Tim Kraska 与 Omar Khattab 三位研究者在 arXiv 上发布了一篇题为《Recursive Language Models》的论文,提出了所谓“递归语言模型”(Recursive Language Models,简称 RLM)的推理策略。
2025年的最后一天, MIT CSAIL提交了一份具有分量的工作。当整个业界都在疯狂卷模型上下文窗口(Context Window),试图将窗口拉长到100万甚至1000万token时,这篇论文却冷静地指出了一个被忽视的真相:这就好比试图通过背诵整本百科全书来回答一个复杂问题,既昂贵又低效。
上个月我从旧金山去纽约参加了 AI Engineer Summit,这是 AI Engineering 里每年最值得关注的硬核会议,也是一年一度头部 AI 工程师们的“聚会”。 它采用邀请审核制