AI资讯新闻榜单内容搜索-MLLMs

AITNT-国内领先的一站式人工智能新闻资讯网站
# 热门搜索 #
搜索: MLLMs
RewardMap: 通过多阶段强化学习解决细粒度视觉推理的Sparse Reward

RewardMap: 通过多阶段强化学习解决细粒度视觉推理的Sparse Reward

RewardMap: 通过多阶段强化学习解决细粒度视觉推理的Sparse Reward

近年来,大语言模型(LLMs)以及多模态大模型(MLLMs)在多种场景理解和复杂推理任务中取得突破性进展。

来自主题: AI技术研报
5535 点击    2025-10-21 15:53
不再靠「猜坐标」!颜水成团队等联合发布PaDT多模态大模型:实现真正的多模态表征输出

不再靠「猜坐标」!颜水成团队等联合发布PaDT多模态大模型:实现真正的多模态表征输出

不再靠「猜坐标」!颜水成团队等联合发布PaDT多模态大模型:实现真正的多模态表征输出

近年来,多模态大语言模型(Multimodal Large Language Models, MLLMs)在图文理解、视觉问答等任务上取得了令人瞩目的进展。然而,当面对需要精细空间感知的任务 —— 比如目标检测、实例分割或指代表达理解时,现有模型却常常「力不从心」。

来自主题: AI技术研报
8969 点击    2025-10-16 12:31
给几何图片写标题就能让AI更聪明,UIUC发布高质量可泛化几何数据集

给几何图片写标题就能让AI更聪明,UIUC发布高质量可泛化几何数据集

给几何图片写标题就能让AI更聪明,UIUC发布高质量可泛化几何数据集

随着多模态大语言模型(MLLMs)在视觉问答、图像描述等任务中的广泛应用,其推理能力尤其是数学几何问题的解决能力,逐渐成为研究热点。 然而,现有方法大多依赖模板生成图像 - 文本对,泛化能力有限,且视

来自主题: AI技术研报
6375 点击    2025-09-26 13:30
ICCV 2025 | ECD:高质量合成图表数据集,提升开源MLLM图表理解能力

ICCV 2025 | ECD:高质量合成图表数据集,提升开源MLLM图表理解能力

ICCV 2025 | ECD:高质量合成图表数据集,提升开源MLLM图表理解能力

在科研、新闻报道、数据分析等领域,图表是信息传递的核心载体。要让多模态大语言模型(MLLMs)真正服务于科学研究,必须具备以下两个能力

来自主题: AI技术研报
8028 点击    2025-08-22 10:35
告别数据「噪音」,UCSD大模型推理新方法DreamPRM充当「信号放大器」,登顶MathVista测评榜

告别数据「噪音」,UCSD大模型推理新方法DreamPRM充当「信号放大器」,登顶MathVista测评榜

告别数据「噪音」,UCSD大模型推理新方法DreamPRM充当「信号放大器」,登顶MathVista测评榜

使用过程奖励模型(PRM)强化大语言模型的推理能力已在纯文本任务中取得显著成果,但将过程奖励模型扩展至多模态大语言模型(MLLMs)时,面临两大难题:

来自主题: AI技术研报
7614 点击    2025-07-12 11:58
突破全模态AI理解边界:HumanOmniV2引入上下文强化学习,赋能全模态模型“意图”推理新高度

突破全模态AI理解边界:HumanOmniV2引入上下文强化学习,赋能全模态模型“意图”推理新高度

突破全模态AI理解边界:HumanOmniV2引入上下文强化学习,赋能全模态模型“意图”推理新高度

在多模态大语言模型(MLLMs)应用日益多元化的今天,对模型深度理解和分析人类意图的需求愈发迫切。尽管强化学习(RL)在增强大语言模型(LLMs)的推理能力方面已展现出巨大潜力,但将其有效应用于复杂的多模态数据和格式仍面临诸多挑战。

来自主题: AI技术研报
8075 点击    2025-07-09 10:59
细粒度视觉推理链引入数学领域,准确率暴涨32%,港中文MMLab打破多模态数学推理瓶颈

细粒度视觉推理链引入数学领域,准确率暴涨32%,港中文MMLab打破多模态数学推理瓶颈

细粒度视觉推理链引入数学领域,准确率暴涨32%,港中文MMLab打破多模态数学推理瓶颈

思维链(Chain of Thought, CoT)推理方法已被证明能够显著提升大语言模型(LLMs)在复杂任务中的表现。而在多模态大语言模型(MLLMs)中,CoT 同样展现出了巨大潜力。

来自主题: AI技术研报
9115 点击    2025-06-17 10:21
多模态模型挑战北京杭州地铁图!o3成绩显著,但跟人类有差距

多模态模型挑战北京杭州地铁图!o3成绩显著,但跟人类有差距

多模态模型挑战北京杭州地铁图!o3成绩显著,但跟人类有差距

近年来,大语言模型(LLMs)以及多模态大模型(MLLMs)在多种场景理解和复杂推理任务中取得突破性进展。

来自主题: AI技术研报
7481 点击    2025-06-07 14:20
多模态推理新基准!最强Gemini 2.5 Pro仅得60分,复旦港中文上海AILab等出品

多模态推理新基准!最强Gemini 2.5 Pro仅得60分,复旦港中文上海AILab等出品

多模态推理新基准!最强Gemini 2.5 Pro仅得60分,复旦港中文上海AILab等出品

逻辑推理是人类智能的核心能力,也是多模态大语言模型 (MLLMs) 的关键能力。随着DeepSeek-R1等具备强大推理能力的LLM的出现,研究人员开始探索如何将推理能力引入多模态大模型(MLLMs)

来自主题: AI技术研报
8643 点击    2025-06-07 10:35