
一次推理解决复合问题:基于MoE的大语言模型知识模块可扩展融合推理架构MeteoRA
一次推理解决复合问题:基于MoE的大语言模型知识模块可扩展融合推理架构MeteoRA在大语言模型领域中,预训练 + 微调范式已经成为了部署各类下游应用的重要基础。在该框架下,通过使用搭低秩自适应(LoRA)方法的大模型参数高效微调(PEFT)技术,已经产生了大量针对特定任务、可重用的 LoRA 适配器。
在大语言模型领域中,预训练 + 微调范式已经成为了部署各类下游应用的重要基础。在该框架下,通过使用搭低秩自适应(LoRA)方法的大模型参数高效微调(PEFT)技术,已经产生了大量针对特定任务、可重用的 LoRA 适配器。
这应该是我知道的第一家有自己大模型的大厂,第一次在面向C端的AI助手应用中,第一次接入DeepSeek R1。这个意义影响还是非常深远的,腾讯在AI这一步上,好像走的格外的开放,从之前的批量开源MoE、混元绘图模型、混元视频模型、混元3D模型,还有今天这神之一手接入DeepSeek R1。
字节出了个全新架构,把推理成本给狠狠地打了下去!推理速度相比MoE架构提升2-6倍,推理成本最高可降低83%。
DeepSeek 的最新模型 DeepSeek-V3 和 DeepSeek-R1 都属于 MoE(混合专家)架构,并在开源世界产生了较大的影响力。特别是 2025 年 1 月开源的 DeepSeek-R1,模型性能可挑战 OpenAI 闭源的 o1 模型。
过年这几天,DeepSeek 算是彻底破圈了,火遍大江南北,火到人尽皆知。虽然网络版和 APP 版已经足够好用,但把模型部署到本地,才能真正实现独家定制,让 DeepSeek R1 的深度思考「以你为主,为你所用」。
本周,在阿里云通义千问 Qwen 团队提交的一篇论文中,研究人员发现了目前最热门的 MoE(混合专家模型)训练中存在的一个普遍关键问题,并提出一种全新的方法——通过轻量的通信将局部均衡放松为全局均衡,使得 MoE 模型的性能和专家特异性都得到了显著的提升。
预训练语言模型通常在其参数中编码大量信息,并且随着规模的增加,它们可以更准确地回忆和使用这些信息。
在 2024 年底,探索通用人工智能(AGI)本质的 DeepSeek AI 公司开源了最新的混合专家(MoE)语言模型 DeepSeek-V3-Base。虽然,目前没有放出详细的模型卡,但官方开源了V3的技术文档PDF。
阔别九月,大家期待的 DeepSeek-VL2 终于来了!DeepSeek-MoE 架构配合动态切图,视觉能力再升级。从视觉定位到梗图解析,从 OCR 到故事生成,从 3B、16B 再到 27B,DeepSeek-VL2 正式开源。
消失一天后的Aurora,正式上线了。一大早,马斯克官宣了Grok集成了自研图像新模型Aurora,MoE架构自回归模型,直接将生成编辑能力一统。在人物肖像生成上,已经逼真到肉眼无法辨别。