
舍弃自回归,离散扩散语言模型如何演化?NUS综述解构技术图谱与应用前沿
舍弃自回归,离散扩散语言模型如何演化?NUS综述解构技术图谱与应用前沿本文主要介绍 xML 团队的论文:Discrete Diffusion in Large Language and Multimodal Models: A Survey。
本文主要介绍 xML 团队的论文:Discrete Diffusion in Large Language and Multimodal Models: A Survey。
普林斯顿大学与字节 Seed、北大、清华等研究团队合作提出了 MMaDA(Multimodal Large Diffusion Language Models),作为首个系统性探索扩散架构的多模态基础模型,MMaDA 通过三项核心技术突破,成功实现了文本推理、多模态理解与图像生成的统一建模。
多模态大模型(Multimodal Large Language Models, MLLM)正迅速崛起,从只能理解单一模态,到如今可以同时理解和生成图像、文本、音频甚至视频等多种模态。正因如此,在AI竞赛进入“下半场”之际(由最近的OpenAI研究员姚顺雨所引发的共识观点),设计科学的评估机制俨然成为决定胜负的核心关键。
尽管 DeepSeek-R1 在单模态推理中取得了显著成功,但已有的多模态尝试(如 R1-V、R1-Multimodal-Journey、LMM-R1)尚未完全复现其核心特征。
Phi-4系列模型上新了!56亿参数Phi-4-multimodal集语音、视觉、文本多模态于一体,读图推理性能碾压GPT-4o;另一款38亿参数Phi-4-mini在推理、数学、编程等任务中超越了参数更大的LLM,支持128K token上下文。
随着语言大模型的成功,视觉 - 语言多模态大模型 (Vision-Language Multimodal Models, 简写为 VLMs) 发展迅速,但在长上下文场景下表现却不尽如人意,这一问题严重制约了多模态模型在实际应用中的潜力。
检索-增强生成 (RAG) 是一个永不过时的话题,并在不断扩展以增强LLMs 的功能。对于那些不太熟悉RAG 的人来说:这种方法利用外部知识来增强模型的能力,从外部资源中检索您实际需要的信息。
多模态大语言模型 (Multimodal Large Language Moodel, MLLM) 以其强大的语言理解能力和生成能力,在各个领域取得了巨大成功。
多模态大模型(Multimodal Large Language Models,MLLMs)在不同的任务中表现出了令人印象深刻的能力,尽管如此,这些模型在检测任务中的潜力仍被低估。
2023-2024年,以 GPT-4V、Gemini、Claude、LLaVA 为代表的多模态大模型(Multimodal LLMs)已经在文本和图像等多模态内容处理方面表现出了空前的能力,成为技术新浪潮。