
谢赛宁新作:表征学习有多重要?一个操作刷新SOTA,DiT训练速度暴涨18倍
谢赛宁新作:表征学习有多重要?一个操作刷新SOTA,DiT训练速度暴涨18倍在NLP领域,研究者们已经充分认识并认可了表征学习的重要性,那么视觉领域的生成模型呢?最近,谢赛宁团队发表的一篇研究就拿出了非常有力的证据:Representation matters!
在NLP领域,研究者们已经充分认识并认可了表征学习的重要性,那么视觉领域的生成模型呢?最近,谢赛宁团队发表的一篇研究就拿出了非常有力的证据:Representation matters!
会议组织者都是 NLP 头部科学家,在语言建模方面有着相当的成果。
最近,斯坦福大学 NLP 组在读博士 Omar Khattab 发布了一篇博文,讨论了顶级 AI 学者们有关做有影响力研究的思考
斯坦福大学的最新研究通过大规模实验发现,尽管大型语言模型(LLMs)在新颖性上优于人类专家的想法,但在可行性方面略逊一筹,还需要进一步研究以提高其实用性。
【新智元导读】一年一度NLP顶会ACL揭晓了最终获奖论文。今年,共有7篇论文荣获最佳论文,时间检验奖颁给斯坦福GloVe、康奈尔大学相似性度量。另外,还有最佳主题奖、最佳社会影响力奖、最佳资源奖、领域主席奖,以及杰出论文奖。
在过去的几年中,大型语言模型(Large Language Models, LLMs)在自然语言处理(NLP)领域取得了突破性的进展。这些模型不仅能够理解复杂的语境,还能够生成连贯且逻辑严谨的文本。
文章讲述了彩云科技团队在改进Transformer架构方面的努力,尤其是推出的全新通用模型架构DCFormer,以及团队面临的种种挑战和突破。
Jason Wei 是思维链提出者,并和 Yi Tay、Jeff Dean 等人合著了关于大模型涌现能力的论文。目前他正在 OpenAI 进行工作。
今年 1 月份,2024 年度 IEEE 冯诺伊曼奖项结果正式公布,斯坦福大学语言学和计算机科学教授、AI 学者克里斯托弗・曼宁(Christopher Manning)获奖。
基于 Transformer 架构的大语言模型在 NLP 领域取得了令人惊艳的效果,然而,Transformer 中自注意力带来的二次复杂度使得大模型的推理成本和内存占用十分巨大,特别是在长序列的场景中。