
微软将推出LazyGraphRAG,索引成本降低至GraphRAG的千分之一!|抢先解读
微软将推出LazyGraphRAG,索引成本降低至GraphRAG的千分之一!|抢先解读将知识图谱技术与RAG有机结合的GraphRAG可谓是今年下半年来的LLM应用领域的一个热点,借助大模型从非结构化文本数据创建知识图谱与摘要,并结合图与向量索引技术来提高对复杂用户查询的检索增强与响应质量。
将知识图谱技术与RAG有机结合的GraphRAG可谓是今年下半年来的LLM应用领域的一个热点,借助大模型从非结构化文本数据创建知识图谱与摘要,并结合图与向量索引技术来提高对复杂用户查询的检索增强与响应质量。
论文提出了一种RAG任务分类法,将用户查询分为四个级别,并讨论了将外部数据集成到LLMs中的三种主要方式。从简单的事实检索到复杂的推理任务,每个级别都有其独特的难点和解决方案,需要不同的技术和方法来优化性能。
关于产业进展,代码辅助工具,PearAI ,https://trypear.ai/,提供了代码自动生成、智能代码预测、代码编辑聊天、代码记忆提升、智能代码搜索等功能,还内置了Perplexity、Memo等其他AI工具,这其实加剧了如cursor等同质产品的竞争。
企业AI的基本技术架构也已经达成共识:强大的AI模型+图技术加持的RAG+Agent搭建+安全护栏。
门外汉也能搞点钱的AI时代
国产大模型,最近有点卷。
随着人工智能的发展,AI问答模型在各种应用场景中表现出色,尤其是在信息检索和知识问答领域。传统的RAG模型通过结合外部知识库的实时检索与生成模型,极大地提升了回答的准确性。然而,这类模型仍然面临一个重要挑战:无法有效处理长期信息,尤其是在需要持续记忆和动态更新知识的场景中表现不佳。
自从生成式 AI 和 LLM 在世界舞台上占据中心位置以来,员工们一直在思考如何最好地将这些变革性的新工具应用于他们的工作流程。然而,他们中的许多人在尝试将生成式 AI 集成到企业环境中时遇到了类似的问题,例如隐私泄露、缺乏相关性以及需要更好的个性化结果。
在 9 月份完成了 2.6 亿美元的 E 轮融资后,主打企业内部 AI 搜索的 Glean 估值达到 46 亿美元。
“过去24个月,AI行业发生的最大变化是什么?是大模型基本消除了幻觉。”11月12日,百度创始人李彦宏在百度世界2024大会上,发表了主题为《应用来了》的演讲,发布两大赋能应用的AI技术:检索增强的文生图技术(iRAG)和无代码工具“秒哒”。文心iRAG用于解决大模型在图片生成上的幻觉问题,极大提升实用性;无代码工具“秒哒”让每个人都拥有程序员的能力,将打造数百万“超级有用”的应用。