NeurIPS 2025 Spotlight | NYU提出QSVD,仅数学压缩让模型更轻、更快、更稳
NeurIPS 2025 Spotlight | NYU提出QSVD,仅数学压缩让模型更轻、更快、更稳在多模态智能浪潮中,视觉语言模型(Vision-Language Models, VLM)已成为连接视觉理解与语言生成的核心引擎。从图像描述、视觉问答到 AI 教育和交互系统,它们让机器能够「看懂世界、说人话」。
在多模态智能浪潮中,视觉语言模型(Vision-Language Models, VLM)已成为连接视觉理解与语言生成的核心引擎。从图像描述、视觉问答到 AI 教育和交互系统,它们让机器能够「看懂世界、说人话」。
首个系统性评估多模态大模型(VLM)交互式物理推理能力的综合基准来了。
加州大学河滨分校团队发现,AI组合推理表现不佳部分源于评测指标过于苛刻。他们提出新指标GroupMatch和Test-Time Matching算法,挖掘模型潜力,使GPT-4.1在Winoground测试中首次超越人类,0.2B参数的SigLIP-B16在MMVP-VLM基准测试上超越GPT-4.1并刷新最优结果。这表明模型的组合推理能力早已存在,只需合适方法在测试阶段解锁。
现在AI都懂文物懂历史了。一项来自北京大学的最新研究引发关注:他们推出了全球首个面向古希腊陶罐的3D视觉问答数据集——VaseVQA-3D,并配套推出了专用视觉语言模型VaseVLM。这意味着,AI正在从“识图机器”迈向“文化考古Agent”。
在 AI 多模态的发展历程中,OpenAI 的 CLIP 让机器第一次具备了“看懂”图像与文字的能力,为跨模态学习奠定了基础。如今,来自 360 人工智能研究院冷大炜团队的 FG-CLIP 2 正式发布并开源,在中英文双语任务上全面超越 MetaCLIP 2 与 SigLIP 2,并通过新的细粒度对齐范式,补足了第一代模型在细节理解上的不足。
当下主流的视觉语言模型(Vision-Language Models, VLM),通常都采用这样一种设计思路:将预训练的视觉编码器与大语言模型通过投影层拼接起来。这种模块化架构成就了当前 VLM 的辉煌,但也带来了一系列新的问题——多阶段训练复杂、组件间语义对齐成本高,不同模块的扩展规律难以协调。
当今的 AI 智能体(Agent)越来越强大,尤其是像 VLM(视觉-语言模型)这样能「看懂」世界的智能体。但研究者发现一个大问题:相比于只处理文本的 LLM 智能体,VLM 智能体在面对复杂的视觉任务时,常常表现得像一个「莽撞的执行者」,而不是一个「深思熟虑的思考者」。
尽管视觉语言模型(LVLMs)在图像与短视频理解中已取得显著进展,但在处理长时序、复杂语义的视频内容时仍面临巨大挑战 —— 上下文长度限制、跨模态对齐困难、计算成本高昂等问题制约着其实际应用。针对这一难题,厦门大学、罗切斯特大学与南京大学联合提出了一种轻量高效、无需微调的创新框架 ——Video-RAG。
现有视觉语言大模型(VLMs)在多模态感知和推理任务上仍存在明显短板:1. 对图像中的细粒度视觉信息理解有限,视觉感知和推理能力未被充分激发;2. 强化学习虽能带来改进,但缺乏高质量、易扩展的 RL 数据。
复旦大学NLP实验室研发Game-RL,利用游戏丰富视觉元素和明确规则生成多模态可验证推理数据,通过强化训练提升视觉语言模型的推理能力。创新性地提出Code2Logic方法,系统化合成游戏任务数据,构建GameQA数据集,验证了游戏数据在复杂推理训练中的优势。