
Claude 3.7 sonnet系统提示词的哲学
Claude 3.7 sonnet系统提示词的哲学这份提示词有很多哲学性思考,很多表达让我看到背后的设计者把claude当成一个人去设计。 我猜,应该是Amanda Askell(Anthropic负责alignment和character design,是学哲学的一位女生,也是我的榜样) 主要设计的。
这份提示词有很多哲学性思考,很多表达让我看到背后的设计者把claude当成一个人去设计。 我猜,应该是Amanda Askell(Anthropic负责alignment和character design,是学哲学的一位女生,也是我的榜样) 主要设计的。
OpenAI 在 “双十二” 发布会的最后一天公开了 o 系列背后的对齐方法 - deliberative alignment,展示了通过系统 2 的慢思考能力提升模型安全性的可行性。
OpenAI o1风格的推理大模型,有行业垂直版了。HK-O1aw,是由香港生成式人工智能研发中心(HKGAI)旗下AI for Reasoning团队(HKAIR) 联合北京大学对齐团队(PKU-Alignment Team)推出的全球首个慢思考范式法律推理大模型。
随着人工智能大模型的能力日益强大,如何让其行为和目标同人类的价值、偏好、意图之间实现协调一致,即人机对齐(human-AI alignment)问题,变得越发重要。
随着大规模语言模型的快速发展,如 GPT、Claude 等,LLM 通过预训练海量的文本数据展现了惊人的语言生成能力。然而,即便如此,LLM 仍然存在生成不当或偏离预期的结果。这种现象在推理过程中尤为突出,常常导致不准确、不符合语境或不合伦理的回答。为了解决这一问题,学术界和工业界提出了一系列对齐(Alignment)技术,旨在优化模型的输出,使其更加符合人类的价值观和期望。
近年来,大模型的高速发展极大地改变了人工智能的格局。对齐(Alignment) 是使大模型的行为符合人类意图和价值观,引导大模型按照人类的需求和期望进化的核心步骤,因此受到学术界和产业界的高度关注。
这篇文章对如何进行领域模型训练进行一个简单的探讨,主要内容是对 post-pretrain 阶段进行分析,后续的 Alignment 阶段就先不提了,注意好老生常谈的“数据质量”和“数据多样性”即可。
知识图谱作为结构化知识的重要载体,广泛应用于信息检索、电商、决策推理等众多领域。然而,由于不同机构或方法构建的知识图谱存在表示方式、覆盖范围等方面的差异,如何有效地将不同的知识图谱进行融合,以获得更加全面、丰富的知识体系,成为提高知识图谱覆盖度和准确率的重要问题,这就是知识图谱对齐(Knowledge Graph Alignment)任务所要解决的核心挑战。
如何让大模型更好的遵从人类指令和意图?如何让大模型有更好的推理能力?如何让大模型避免幻觉?能否解决这些问题,是让大模型真正广泛可用,甚至实现超级智能(Super Intelligence)最为关键的技术挑战。这些最困难的挑战也是吴翼团队长期以来的研究重点,大模型对齐技术(Alignment)所要攻克的难题。
被 OpenAI 的 Superalignment 研究团队解雇的 Leopold Aschenbrenner 最近发表了一篇关于人工智能的长篇大作,里面宣称根据他的曲线预测,人类到2027年就能实现通用人工智能。本文是对这一预测的讨论。