
全球首次!2B复现DeepSeek-R1「啊哈时刻」,UCLA等用纯RL实现多模态推理
全球首次!2B复现DeepSeek-R1「啊哈时刻」,UCLA等用纯RL实现多模态推理由UCLA等机构共同组建的研究团队,全球首次在20亿参数非SFT模型上,成功实现了多模态推理的DeepSeek-R1「啊哈时刻」!就在刚刚,我们在未经监督微调的2B模型上,见证了基于DeepSeek-R1-Zero方法的视觉推理「啊哈时刻」!
由UCLA等机构共同组建的研究团队,全球首次在20亿参数非SFT模型上,成功实现了多模态推理的DeepSeek-R1「啊哈时刻」!就在刚刚,我们在未经监督微调的2B模型上,见证了基于DeepSeek-R1-Zero方法的视觉推理「啊哈时刻」!
就在昨天,全国产算力训出的讯飞星火X1全面升级!70B小身板在数学领域全面领先,性能直接对标OpenAI o1和DeepSeek-R1。单机部署成本骤降,彻底颠覆行业应用门槛。
给DeepSeek-R1推理指导,它的数学推理能力就开始暴涨。更令人吃惊是,Qwen2.5-14B居然给出了此前从未见过的希尔伯特问题的反例!而人类为此耗费了27年。研究者预言:LLM离破解NP-hard问题,已经又近了一步。
本文介绍了英特尔®至强®处理器在AI推理领域的优势,如何使用一键部署的镜像进行纯CPU环境下基于AMX加速后的DeepSeek-R1 7B蒸馏模型推理,以及纯CPU环境下部署DeepSeek-R1 671B满血版模型实践。
属于OpenAI的时代结束了?
随着 AI 能力的提升,一个常见的话题便是基准不够用了——一个新出现的基准用不了多久时间就会饱和,比如 Replit CEO Amjad Masad 就预计 2023 年 10 月提出的编程基准 SWE-bench 将在 2027 年饱和。
最近,英伟达开源了首个在Blackwell架构上优化的DeepSeek-R1,实现了推理速度提升25倍,和每token成本降低20倍的惊人成果。同时,DeepSeek连续开源多个英伟达GPU优化项目,共同探索模型性能极限。
斯坦福和普林斯顿研究者发现,DeepSeek-R1生成的自定义CUDA内核,完爆了o1和Claude 3.5 Sonnet,拿下总排名第一。虽然目前只能在不到20%任务上超越PyTorch Eager基线,但GPU编程加速自动化的按钮,已经被按下!
DeepSeek-R1背后关键——多头潜在注意力机制(MLA),现在也能轻松移植到其他模型了!
自 OpenAI 发布 o1-mini 模型以来,推理模型就一直是 AI 社区的热门话题,而春节前面世的开放式推理模型 DeepSeek-R1 更是让推理模型的热度达到了前所未有的高峰。