AI检索黑马获2000万美元融资,推进RAG系统精准化,破解AI幻觉难题
AI检索黑马获2000万美元融资,推进RAG系统精准化,破解AI幻觉难题在AI技术广泛应用的企业场景中,提高检索准确度和效率已成为关键挑战。特别是面对生成式AI中的“幻觉”问题,企业急需有效解决方案。
在AI技术广泛应用的企业场景中,提高检索准确度和效率已成为关键挑战。特别是面对生成式AI中的“幻觉”问题,企业急需有效解决方案。
近日,来自 CMU 的 Catalyst Group 团队发布了一款 PyTorch 算子编译器 Mirage,用户无需编写任何 CUDA 和 Triton 代码就可以自动生成 GPU 内核,并取得更佳的性能。
曾几何时,LLM还是憨憨的。 脑子里的知识比较混乱,同时上下文窗口长度也有限。 检索增强生成(RAG)的出现在很大程度上提升了模型的性能。
3D生成也能支持检索增强(RAG)了。
近日,在 2024 Inclusion・外滩大会 “超越平面思维,图计算让 AI 洞悉复杂世界” 见解论坛上,蚂蚁集团知识图谱负责人梁磊分享了 “构建知识增强的专业智能体” 相关工作,并带来了知识图谱与大模型结合最新研发成果 —— 知识增强大模型服务框架 KAG。
更好的效果,更低的价格,听起来是不是像梦呓?
上篇已经详细介绍了AI使用知识库进行时到底发生了什么
在把AI大模型能力接入微信后,发现很多朋友想要落地在类似客服的应用场景。但目前大模型存在幻觉,一不留神就胡乱回答,这在严肃的商用场景下是不可接受的。
与 Text2SQL 或 RAG 不同,TAG 充分利用了数据库系统和 LLM 的功能。
当前流行的基于嵌入检索的RAG(Retrieval-Augmented Generation)技术由Meta在2020年首次提出,最初应用于开放领域的抽取式问答。