 
AGI前夜重磅:RL突破模型「认知上限」,真·学习发生了!
AGI前夜重磅:RL突破模型「认知上限」,真·学习发生了!UC Berkeley、UW、AI2 等机构联合团队最新工作提出:在恰当的训练范式下,强化学习(RL)不仅能「打磨」已有能力,更能逼出「全新算法」级的推理模式。他们构建了一个专门验证这一命题的测试框架 DELTA,并观察到从「零奖励」到接近100%突破式跃迁的「RL grokking」现象。
 
UC Berkeley、UW、AI2 等机构联合团队最新工作提出:在恰当的训练范式下,强化学习(RL)不仅能「打磨」已有能力,更能逼出「全新算法」级的推理模式。他们构建了一个专门验证这一命题的测试框架 DELTA,并观察到从「零奖励」到接近100%突破式跃迁的「RL grokking」现象。
 
昨天晚上闲着没事,想在 DeepSeek 搜一下 AI 博主有哪些可以学习的。 结果没想到,搜索结果里竟然出现了我自己。 内心 OS:祖坟冒青烟了,妈妈我出息了,我被 AI 认证了,以后简历可以写被
 
你还在依赖 SEO 和社交媒体为产品导流吗?这些传统增长驱动可能面临失效的困境了。我最近听了一场让我震惊的演讲,来自 Lovable 的增长负责人 Elena Verna。她用一组数据直接把现实摆在我
 
近日,字节跳动一篇论文介绍了他们 LLM 训练基础设施 ByteRobust,引发广泛关注。现在,在训练基础设施层面上,我们终于知道字节跳动会如何稳健地训练豆包了。
 
AI新突破!DeepSeek-OCR以像素处理文本,压缩率小于1/10,基准测试领跑。开源一夜4.4k星,Karpathy技痒难耐,展望视觉输入的通用性。
 
比拉尔·阿布-加扎勒在我们通话前几天刚刚搬到伦敦,现在往返于伦敦和迪拜两地。在美国工作近十年后,包括在Scale AI 任职的经历,他正将这些经验注入新事业:1001 AI——一家为中东和北非地区(MENA)关键行业构建人工智能基础设施的企业。
 
生成式 AI 正在重写 3D 内容的生产流程:从“DCC 工具 + 外包”的线性供给,演进到“资产规模化生成 + 管线可用”的指数供给模式。过去五年,技术范式经历了从实时体积渲染,NeRF,到Score Distillation,3D扩散的快速迭代;需求侧则由游戏与影视,向3D 打印、电商样机、数字人、教育培训、以及AR/VR等长尾场景外溢。
 
亚马逊一声咳嗽,半个互联网都地震了。 由于亚马逊AWS服务器宕机,大量互联网服务被迫中断,ChatGPT也被殃及。
 
天天刷推,大模型的脑子也会坏掉。 终于有研究证明,互联网上的烂内容会让大模型得「脑腐」。 相信许多读者对「脑腐」这个词并不陌生,长时间沉浸在碎片化的网络信息中,我们经常会感到注意力下降、思维变钝。
 
来自硅谷一线 AI 创业者的数据:95% 的 AI Agent 在生产环境都部署失败了。 「不是因为模型本身不够智能,而是因为围绕它们搭建的脚手架,上下文工程、安全性、记忆设计都还远没有到位。」 「大多数创始人以为自己在打造 AI 产品,但实际上他们构建的是上下文选择系统。」