
英伟达最新技术分享:手把手教你用Llama 3.1合成数据改进模型!附代码
英伟达最新技术分享:手把手教你用Llama 3.1合成数据改进模型!附代码适逢Llama 3.1模型刚刚发布,英伟达就发表了一篇技术博客,手把手教你如何好好利用这个强大的开源模型,为领域模型或RAG系统的微调生成合成数据。
适逢Llama 3.1模型刚刚发布,英伟达就发表了一篇技术博客,手把手教你如何好好利用这个强大的开源模型,为领域模型或RAG系统的微调生成合成数据。
牛津剑桥的9次投毒导致模型崩溃的论文,已经遭到了诸多吐槽:这也能上Nature?学术圈则对此进行了进一步讨论,大家的观点殊途同归:合成数据被很多人视为灵丹妙药,但天下没有免费的午餐。
9次迭代后,模型开始出现诡异乱码,直接原地崩溃!就在今天,牛津、剑桥等机构的一篇论文登上了Nature封面,称合成数据就像近亲繁殖,效果无异于投毒。有无破解之法?那就是——更多使用人类数据!
最近,一个对标 GPT-4o 的开源实时语音多模态模型火了。
刚刚,英伟达全新发布的开源模型Nemotron-4 340B,有可能彻底改变训练LLM的方式!从此,或许各行各业都不再需要昂贵的真实世界数据集了。而且,Nemotron-4 340B直接超越了Mixtral 8x22B、Claude sonnet、Llama3 70B、Qwen 2,甚至可以和GPT-4掰手腕!
性能超越 Llama-3,主要用于合成数据。
使用大模型合成的数据,就能显著提升3D生成能力?
通过视觉信息识别、理解人群的行为是视频监测、交互机器人、自动驾驶等领域的关键技术之一,但获取大规模的人群行为标注数据成为了相关研究的发展瓶颈。如今,合成数据集正成为一种新兴的,用于替代现实世界数据的方法,但已有研究中的合成数据集主要聚焦于人体姿态与形状的估计。它们往往只提供单个人物的合成动画视频,而这并不适用于人群的视频识别任务。
AI能够帮助我们给产业提供更好的产品和服务,同时生长出来的合成数据服务反哺到AI,能够让AI产生更大的加速度。
就在最近,清华大学SuperBench团队的新一轮全球大模型评测结果出炉了!