ECCV 2024 | 提升GPT-4V、Gemini检测任务性能,你需要这种提示范式
ECCV 2024 | 提升GPT-4V、Gemini检测任务性能,你需要这种提示范式多模态大模型(Multimodal Large Language Models,MLLMs)在不同的任务中表现出了令人印象深刻的能力,尽管如此,这些模型在检测任务中的潜力仍被低估。
多模态大模型(Multimodal Large Language Models,MLLMs)在不同的任务中表现出了令人印象深刻的能力,尽管如此,这些模型在检测任务中的潜力仍被低估。
近期,关于多模态大模型的研究如火如荼,工业界对此的投入也越来越多。
在今天揭幕的 2024 世界人工智能大会暨人工智能全球治理高级别会议(简称“WAIC 2024”)上,阶跃星辰首发了三款 Step 系列通用大模型新品:Step-2 万亿参数语言大模型正式版、Step-1.5V 多模态大模型、Step-1X 图像生成大模型。
在 2024 年世界人工智能大会的现场,很多人在一个展台前排队,只为让 AI 大模型给自己在天庭「安排」一个差事。
GPT-4o或许还得等到今年秋季才对外开放。不过,由法国8人团队打造的原生多模态Moshi,已经实现了接近GPT-4o的水平,现场演示几乎0延迟,AI大佬纷纷转发。
国产多模态大模型的头号交椅,再次易主
Claude 3.5 Sonnet的图表推理能力,比GPT-4o高出了27.8%。 针对多模态大模型在图表任务上的表现,陈丹琦团队提出了新的测试基准。 新Benchmark比以往更有区分度,也让一众传统测试中的高分模型暴露出了真实能力。
在当今的多模态大模型的发展中,模型的性能和训练数据的质量关系十分紧密,可以说是 “数据赋予了模型的绝大多数能力”。
现有多模态大模型在对齐不同模态时面临幻觉和细粒度感知不足等问题,传统偏好学习方法依赖可能不适配的外源数据,存在成本和质量问题。Calibrated Self-Rewarding(CSR)框架通过自我增强学习,利用模型自身输出构造更可靠的偏好数据,结合视觉约束提高学习效率和准确性。
继Sora官宣之后,多模态大模型在视频生成方面的应用简直就像井喷一样涌现出来,LUMA、Gen-3 Alpha等视频生成模型展现了极佳质量的艺术风格和视频场景的细节雕刻能力,文生视频、图生视频的新前沿不断被扩展令大家惊喜不已,抱有期待。