AI资讯新闻榜单内容搜索-大模型

AITNT-国内领先的一站式人工智能新闻资讯网站
# 热门搜索 #
搜索: 大模型
只需1/4预算,性能反超基线:阿里高德提出Tree-GRPO,高效破解智能体RL难题

只需1/4预算,性能反超基线:阿里高德提出Tree-GRPO,高效破解智能体RL难题

只需1/4预算,性能反超基线:阿里高德提出Tree-GRPO,高效破解智能体RL难题

对于大模型的强化学习已在数学推理、代码生成等静态任务中展现出不俗实力,而在需要与开放世界交互的智能体任务中,仍面临「两朵乌云」:高昂的 Rollout 预算(成千上万的 Token 与高成本的工具调用)和极其稀疏的「只看结果」的奖励信号。

来自主题: AI技术研报
7414 点击    2025-10-15 12:07
英伟达AI超算3999开售,「掌心之中」可部署所有大参数开源模型!

英伟达AI超算3999开售,「掌心之中」可部署所有大参数开源模型!

英伟达AI超算3999开售,「掌心之中」可部署所有大参数开源模型!

英伟达面向个人的AI超算DGX Spark已上市!128GB统一内存(常规系统内存+GPU显存),加上允许将两台DGX Spark连起来,直接可以跑起来405B的大模型(FP4精度),而这已经逼近目前开源的最大模型!如此恐怖的实力却格外安静优雅,大小与Mac mini相仿,3999美元带回家!

来自主题: AI资讯
8928 点击    2025-10-14 22:34
剑桥揭开大模型翻车黑箱!别再怪它不懂推理,是行动出错了

剑桥揭开大模型翻车黑箱!别再怪它不懂推理,是行动出错了

剑桥揭开大模型翻车黑箱!别再怪它不懂推理,是行动出错了

为什么大模型,在执行长时任务时容易翻车?这让一些专家,开始质疑大模型的推理能力,认为它们是否只是提供了「思考的幻觉」。近日,剑桥大学等机构的一项研究证明:问题不是出现在推理上,而是出在大模型的执行能力上。

来自主题: AI技术研报
7253 点击    2025-10-14 11:10
真正的AI竞争力,藏在大模型“后训练”这一步

真正的AI竞争力,藏在大模型“后训练”这一步

真正的AI竞争力,藏在大模型“后训练”这一步

当全球的目光还在聚焦基座模型的参数竞赛时,一场更为深刻的变革正在悄然发生——后训练(Post-Training)。

来自主题: AI技术研报
7428 点击    2025-10-14 10:16
又一批AI社交产品悄悄「死亡」了

又一批AI社交产品悄悄「死亡」了

又一批AI社交产品悄悄「死亡」了

又一批AI社交公司与产品悄悄「死亡」了。今年9月,一批AI社交公司发布关停或通知,这之中,既包括大模型明星公司、社交公司等中型企业,如阶跃星辰To C产品「冒泡鸭」、Soul旗下的AI应用「异世界回响」等,也包括一批垂直领域的初创产品,如定位AI情感分析的Lumi、由前苹果设计师Jason Yuan创立的情感陪伴应用Dot等。

来自主题: AI资讯
8316 点击    2025-10-13 16:21
大模型追逐星辰大海,GPT和Gemini国际天文奥赛夺金

大模型追逐星辰大海,GPT和Gemini国际天文奥赛夺金

大模型追逐星辰大海,GPT和Gemini国际天文奥赛夺金

人工智能真是日新月异。早上看到网友的评论:我们已经 0 天没有吸引注意的 AI 领域新突破了。记得三个月前,OpenAI 官宣了他们的推理模型在国际数学奥林匹克(IMO)竞赛中获得了金牌。

来自主题: AI资讯
8162 点击    2025-10-13 16:20
抖音&LV-NUS开源多模态新模,以小博大刷新SOTA,8B推理比肩GPT-4o

抖音&LV-NUS开源多模态新模,以小博大刷新SOTA,8B推理比肩GPT-4o

抖音&LV-NUS开源多模态新模,以小博大刷新SOTA,8B推理比肩GPT-4o

2B模型在多个基准位列4B参数以下开源第一。 抖音SAIL团队与LV-NUS Lab联合推出的多模态大模型SAIL-VL2。

来自主题: AI技术研报
6620 点击    2025-10-13 15:58
为MoE解绑:全新「专家即服务」推理架构发布,超细粒度扩展锐减37.5%成本

为MoE解绑:全新「专家即服务」推理架构发布,超细粒度扩展锐减37.5%成本

为MoE解绑:全新「专家即服务」推理架构发布,超细粒度扩展锐减37.5%成本

近年来,大型语言模型的参数规模屡创新高,随之而来的推理开销也呈指数级增长。如何降低超大模型的推理成本,成为业界关注的焦点之一。Mixture-of-Experts (MoE,混合专家) 架构通过引入大量 “专家” 子模型,让每个输入仅激活少数专家,从而在参数规模激增的同时避免推理计算量同比增长。

来自主题: AI技术研报
7704 点击    2025-10-13 15:49
RL 将如何提高具身大模型 VLA 泛化性?清华大学团队NeurIPS 2025文章分析 RL 与 SFT 泛化性差异

RL 将如何提高具身大模型 VLA 泛化性?清华大学团队NeurIPS 2025文章分析 RL 与 SFT 泛化性差异

RL 将如何提高具身大模型 VLA 泛化性?清华大学团队NeurIPS 2025文章分析 RL 与 SFT 泛化性差异

在具身智能领域,视觉 - 语言 - 动作(VLA)大模型正展现出巨大潜力,但仍面临一个关键挑战:当前主流的有监督微调(SFT)训练方式,往往让模型在遇到新环境或任务时容易出错,难以真正做到类人般的泛化

来自主题: AI技术研报
7988 点击    2025-10-13 10:28