
全面超越DPO:陈丹琦团队提出简单偏好优化SimPO,还炼出最强8B开源模型
全面超越DPO:陈丹琦团队提出简单偏好优化SimPO,还炼出最强8B开源模型为了将大型语言模型(LLM)与人类的价值和意图对齐,学习人类反馈至关重要,这能确保它们是有用的、诚实的和无害的。在对齐 LLM 方面,一种有效的方法是根据人类反馈的强化学习(RLHF)。尽管经典 RLHF 方法的结果很出色,但其多阶段的过程依然带来了一些优化难题,其中涉及到训练一个奖励模型,然后优化一个策略模型来最大化该奖励。
来自主题: AI技术研报
9608 点击 2024-05-26 13:45