北交开源o1代码版!强化学习+蒙特卡洛树搜索,源代码、精选数据集以及衍生模型通通开源
北交开源o1代码版!强化学习+蒙特卡洛树搜索,源代码、精选数据集以及衍生模型通通开源北京交通大学研究团队悄默声推出了一版o1,而且所有源代码、精选数据集以及衍生模型都开源!
北京交通大学研究团队悄默声推出了一版o1,而且所有源代码、精选数据集以及衍生模型都开源!
在人工智能发展史上,强化学习 (RL) 凭借其严谨的数学框架解决了众多复杂的决策问题,从围棋、国际象棋到机器人控制等领域都取得了突破性进展。
Lilian Weng离职OpenAI后首篇博客发布!文章深入讨论了大模型强化学习中的奖励欺骗问题。随着语言模型在许多任务上的泛化能力不断提升,以及RLHF逐渐成为对齐训练的默认方法,奖励欺骗在语言模型的RL训练中已经成为一个关键的实践性难题。
如果说有一类游戏贯穿AI发展的始终,围绕其诞生的Thinking Game至今仍影响着最前沿AI技术的发展,那么答案很显然: 棋类游戏。
之前领导OpenAI安全团队的北大校友翁荔(Lilian Weng),离职后第一个动作来了。当然是发~博~客。这次的博客一如既往万字干货,妥妥一篇研究综述,翁荔本人直言写起来不容易。主题围绕强化学习中奖励黑客(Reward Hacking)问题展开,即Agent利用奖励函数或环境中的漏洞来获取高奖励,而并未真正学习到预期行为。
自然智能(Natural intelligence)过程就像一条连续的流,可以实时地感知、行动和学习。流式学习是 Q 学习和 TD 等经典强化学习 (RL) 算法的运作方式,它通过使用最新样本而不存储样本来模仿自然学习。这种方法也非常适合资源受限、通信受限和隐私敏感的应用程序。
“搞软件的,鄙视搞硬件的,搞大模型的,看不起强化学习的”,多位行业人士给出了类似的观察。
今天,DeepSeek 全新研发的推理模型 DeepSeek-R1-Lite 预览版正式上线。所有用户均可登录官方网页 (chat.deepseek.com),一键开启与 R1-Lite 预览版模型的超强推理对话体验。DeepSeek R1 系列模型使用强化学习训练,推理过程包含大量反思和验证,思维链长度可达数万字。
耽误业界好多年?
DIAMOND是一种新型的强化学习智能体,在一个由扩散模型构建的虚拟世界中进行训练,能够以更高效率学习和掌握各种任务。在Atari 100k基准测试中,DIAMOND的平均得分超越了人类玩家,证明了其在模拟复杂环境中处理细节和进行决策的能力。