弱智吧:大模型变聪明,有我一份贡献
弱智吧:大模型变聪明,有我一份贡献「被门夹过的核桃,还能补脑吗?」
「被门夹过的核桃,还能补脑吗?」
离大谱了,弱智吧登上正经AI论文,还成了最好的中文训练数据??
2022 年底,随着 ChatGPT 的爆火,人类正式进入了大模型时代。然而,训练大模型需要的时空消耗依然居高不下,给大模型的普及和发展带来了巨大困难。面对这一挑战,原先在计算机视觉领域流行的 LoRA 技术成功转型大模型 [1][2],带来了接近 2 倍的时间加速和理论最高 8 倍的空间压缩,将微调技术带进千家万户。
【新智元导读】从今天起,千元级就能解锁专属大模型了!这款搭载首颗纯国产14nm Chiplet大模型推理芯片的「深目」AI模盒,可以轻松实现百亿级参数多模态大模型的推理+微调。各种碎片化长尾算法,直接秒级生成!
【新智元导读】就在刚刚,全球最强开源大模型王座易主,创业公司Databricks发布的DBRX,超越了Llama 2、Mixtral和Grok-1。MoE又立大功!这个过程只用了2个月,1000万美元,和3100块H100。
这是迄今为止最强大的开源大语言模型,超越了 Llama 2、Mistral 和马斯克刚刚开源的 Grok-1。
作者表示:在各种有效的 LLM 微调方法中,LoRA 仍然是他的首选。LoRA(Low-Rank Adaptation)作为一种用于微调 LLM(大语言模型)的流行技术,最初由来自微软的研究人员在论文《 LORA: LOW-RANK ADAPTATION OF LARGE LANGUAGE MODELS 》中提出。
在微调大型模型的过程中,一个常用的策略是“知识蒸馏”,这意味着借助高性能模型,如GPT-4,来优化性能较低的开源模型。这种方法背后隐含的哲学理念与logos中心论相似,把GPT-4等模型视为更接近唯一的逻辑或真理的存在。
尽管收集人类对模型生成内容的相对质量的标签,并通过强化学习从人类反馈(RLHF)来微调无监督大语言模型,使其符合这些偏好的方法极大地推动了对话式人工智能的发展。
检索增强生成(RAG)和微调(Fine-tuning)是提升大语言模型性能的两种常用方法,那么到底哪种方法更好?在建设特定领域的应用时哪种更高效?微软的这篇论文供你选择时进行参考。