
英伟达联手MIT清北发布SANA 1.5!线性扩散Transformer再刷文生图新SOTA
英伟达联手MIT清北发布SANA 1.5!线性扩散Transformer再刷文生图新SOTASANA 1.5是一种高效可扩展的线性扩散Transformer,针对文本生成图像任务进行了三项创新:高效的模型增长策略、深度剪枝和推理时扩展策略。这些创新不仅大幅降低了训练和推理成本,还在生成质量上达到了最先进的水平。
SANA 1.5是一种高效可扩展的线性扩散Transformer,针对文本生成图像任务进行了三项创新:高效的模型增长策略、深度剪枝和推理时扩展策略。这些创新不仅大幅降低了训练和推理成本,还在生成质量上达到了最先进的水平。
香港大学联合上海人工智能实验室,华为诺亚方舟实验室提出高效扩散模型 LiT:探索了扩散模型中极简线性注意力的架构设计和训练策略。LiT-0.6B 可以在断网状态,离线部署在 Windows 笔记本电脑上,遵循用户指令快速生成 1K 分辨率逼真图片。
在过去的两年里,城市场景生成技术迎来了飞速发展,一个全新的概念 ——世界模型(World Model)也随之崛起。当前的世界模型大多依赖 Video Diffusion Models(视频扩散模型)强大的生成能力,在城市场景合成方面取得了令人瞩目的突破。然而,这些方法始终面临一个关键挑战:如何在视频生成过程中保持多视角一致性?
对于 LLM,推理时 scaling 是有效的!这一点已经被近期的许多推理大模型证明:o1、o3、DeepSeek R1、QwQ、Step Reasoner mini……
划时代的突破来了!来自NYU、MIT和谷歌的顶尖研究团队联手,为扩散模型开辟了一个全新的方向——测试时计算Scaling Law。其中,谢赛宁高徒为共同一作。
降低扩散模型生成的计算成本,性能还保持在高水平! 最新研究提出一种用于极低位差分量化的混合精度量化方法。
GANs are so back!?
GAN已死?不,它卷土重来了!布朗大学和康奈尔大学的研究者刚刚提出了R3GAN,充分利用现代架构设计,彻底摒弃临时技巧,一半参数就能碾压扩散模型。网友惊呼:游戏规则要改变了!
将扩散模型量化到1比特极限,又有新SOTA了! 来自北航、ETH等机构的研究人员提出了一种名为BiDM的新方法,首次将扩散模型(DMs)的权重和激活完全二值化。
对于专业应用和创意工作流来说,除了高质量的形状和纹理,更需要可以独立操作的「零部件级3D模型」。为此,Meta与牛津大学的研究人员推出了全新的多视图扩散模型。