随着人工智能和大型模型技术的迅猛发展,检索增强生成(Retrieval-Augmented Generation, RAG)已成为大型语言模型生成文本的一种主要范式。
随着人工智能和大型模型技术的迅猛发展,检索增强生成(Retrieval-Augmented Generation, RAG)已成为大型语言模型生成文本的一种主要范式。
搜索技术是计算机科学中最难的技术挑战之一,迄今只有很少一部分商业化产品可以把这个问题解决得很好。大多数商品并不需要很强的搜索,因为这和用户体验并没有直接关系。
检索增强式生成(RAG)是一种使用检索提升语言模型的技术。
斯坦福大学的研究人员研究了RAG系统与无RAG的LLM (如GPT-4)相比在回答问题方面的可靠性。研究表明,RAG系统的事实准确性取决于人工智能模型预先训练的知识强度和参考信息的正确性。
Gecko 是一种通用的文本嵌入模型,可用于训练包括文档检索、语义相似度和分类等各种任务。文本嵌入模型在自然语言处理中扮演着重要角色,为各种文本相关任务提供了强大的语义表示和计算能力。
今天,特工女巫将为大家带来 ThinkAny,这是一款由个人独立开发但小而美的 AI 搜索产品,一起看看它的产品功能设计和技术实现。
Notion 是生产力工具领域 AI 策略最为激进的一家公司:在 ChatGPT 推出 2 个月后,Notion 就宣布推出 Notion AI,将 GenAI 的体验直接融入到产品,并根据不同需求和场景预设了 prompt,用户只需要空格或“/”即可调用 GPT。
从 ChatGPT 最初发布算起,虽然大模型的热潮已经持续了一年多,但大部分时间依然停留在学术前沿和技术创新层面,深入具体场景实现产业价值的案例并不多见。