前特斯拉Optimus科学家跳槽HF,直接开源了一个机器人代码库
前特斯拉Optimus科学家跳槽HF,直接开源了一个机器人代码库今年 3 月,以构建大型开源社区而闻名的 AI 初创公司 Hugging Face,挖角前特斯拉科学家 Remi Cadene 来领导一个新的开源机器人项目 ——LeRobot,引起了轰动。
今年 3 月,以构建大型开源社区而闻名的 AI 初创公司 Hugging Face,挖角前特斯拉科学家 Remi Cadene 来领导一个新的开源机器人项目 ——LeRobot,引起了轰动。
根据路透社5月4日消息,著名华人计算机科学家李飞飞正在建立一家初创公司。这家公司会利用类似人类对视觉数据的处理,使 AI 能够进行高级推理。这种AI算法使用的概念被称为“空间智能”。至于新公司的名字,还没有向外界披露。
过去几年,借助Scaling Laws的魔力,预训练的数据集不断增大,使得大模型的参数量也可以越做越大,从五年前的数十亿参数已经成长到今天的万亿级,在各个自然语言处理任务上的性能也越来越好。
过去一年,AI大模型无疑是科技行业中最亮眼的主角,从FAAMG到BAT、再到一众初创企业,无数优秀的大脑、海量的资源都投入到了这个有望解放人类生产力的赛道中。
Meta最近开源的Llama 3模型再次证明了「数据」是提升性能的关键,但现状是,开源的大模型有一堆,可开源的大规模数据却没多少,而收集、清洗数据又是一项极其费时费力的工作,也导致了大模型预训练技术仍然掌握在少数高端机构的手中。
近年来,大型语言模型(LLM)在数学应用题和数学定理证明等任务中取得了长足的进步。数学推理需要严格的、形式化的多步推理过程,因此是 LLMs 推理能力进步的关键里程碑, 但仍然面临着重要的挑战。
使用测序 (scATAC-seq) 技术对转座酶可及的染色质进行单细胞测定,可在单细胞分辨率下深入了解基因调控和表观遗传异质性,但由于数据的高维性和极度稀疏性,scATAC-seq 的细胞注释仍然具有挑战性。现有的细胞注释方法大多集中在细胞峰矩阵上,而没有充分利用底层的基因组序列。
万万没想到,与任务无直接关联的多模态数据也能提升Transformer模型性能。
当前最火的大模型,竟然三分之二都存在过拟合问题?
自2021年诞生,CLIP已在计算机视觉识别系统和生成模型上得到了广泛的应用和巨大的成功。我们相信CLIP的创新和成功来自其高质量数据(WIT400M),而非模型或者损失函数本身。虽然3年来CLIP有大量的后续研究,但并未有研究通过对CLIP进行严格的消融实验来了解数据、模型和训练的关系。