
迈向多语言医疗大模型:大规模预训练语料、开源模型与全面基准测试
迈向多语言医疗大模型:大规模预训练语料、开源模型与全面基准测试在医疗领域中,大语言模型已经有了广泛的研究。然而,这些进展主要依赖于英语的基座模型,并受制于缺乏多语言医疗专业数据的限制,导致当前的医疗大模型在处理非英语问题时效果不佳。
在医疗领域中,大语言模型已经有了广泛的研究。然而,这些进展主要依赖于英语的基座模型,并受制于缺乏多语言医疗专业数据的限制,导致当前的医疗大模型在处理非英语问题时效果不佳。
告别传统指令微调,大模型特定任务性能提升有新方法了。 一种新型开源增强知识框架,可以从公开数据中自动提取相关知识,针对性提升任务性能。 与基线和SOTA方法对比,本文方法在各项任务上均取得了更好的性能。
大模型医疗应用还在早期,最大挑战还是在数据的处理上,国内至少还需要两到三年来解决; 创业公司还有机会,只要找到合适的切入点。这个行业只有撑死的,没有饿死的。
《纽约时报》今天披露了很多关于 OpenAI 有意思的数据,根据其查阅的财务文件显示,OpenAI 8 月份的月收入达到 3 亿美元,自 2023 年初以来增长了 1700%,预计今年的年销售额约为 37 亿美元,而明年营收将增至 116 亿美元。
视觉数据的种类极其多样,囊括像素级别的图标到数小时的视频。现有的多模态大语言模型(MLLM)通常将视觉输入进行分辨率的标准化或进行动态切分等操作,以便视觉编码器处理。然而,这些方法对多模态理解并不理想,在处理不同长度的视觉输入时效率较低。
Sutton 等研究人员近期在《Nature》上发表的研究《Loss of Plasticity in Deep Continual Learning》揭示了一个重要发现:在持续学习环境中,标准深度学习方法的表现竟不及浅层网络。研究指出,这一现象的主要原因是 "可塑性损失"(Plasticity Loss):深度神经网络在面对非平稳的训练目标持续更新时,会逐渐丧失从新数据中学习的能力。
Google DeepMind的SCoRe方法通过在线多轮强化学习,显著提升了大型语言模型在没有外部输入的情况下的自我修正能力。该方法在MATH和HumanEval基准测试中,分别将自我修正性能提高了15.6%和9.1%。
仅需600多条数据,就能训练自己的长输出模型了?!
9月26日,人工智能及大数据科技企业合合信息正式挂牌科创板,为三年IPO冲刺征程画上句号。
SafeEar是一种内容隐私保护的语音伪造检测方法,其核心是设计基于神经音频编解码器的解耦模型,分离语音声学与语义信息,仅利用声学信息检测,包括前端解耦模型、瓶颈层和混淆层、伪造检测器、真实环境增强四部分。