
人大北邮等团队解视触觉感知统一难题,模型代码数据集全开源 | ICLR 2025
人大北邮等团队解视触觉感知统一难题,模型代码数据集全开源 | ICLR 2025机器人怎样感知世界?
机器人怎样感知世界?
今年,CVPR共有13008份有效投稿并进入评审流程,其中2878篇被录用,最终录用率为22.1%。
南洋理工大学的研究团队提出了MedRAG模型,通过结合知识图谱推理增强大语言模型(LLM)的诊断能力,显著提升智能健康助手的诊断精度和个性化建议水平。MedRAG在真实临床数据集上表现优于现有模型,准确率提升11.32%,并具备良好的泛化能力,可广泛应用于不同LLM基模型。
近日,北京大学智能学院袁晓如课题组在中国古籍内容的智能探索方面开展跨学科合作探索取得重要进展。研究通过智能自动分类机制,从大量中国古籍中提取可视化图像,建立大规模中国古代可视化集合
Hugging Face的Open R1重磅升级,7B击败Claude 3.7 Sonnet等一众前沿模型。凭借CodeForces-CoTs数据集的10万高质量样本、IOI难题的严苛测试,以及模拟真实竞赛的提交策略优化,这款模型展现了惊艳的性能。
为了解决视频编辑模型缺乏训练数据的问题,本文作者(来自香港中文大学、香港理工大学、清华大学等高校和云天励飞)提出了一个名为 Señorita-2M 的数据集。该数据集包含 200 万高质量的视频编辑对,囊括了 18 种视频编辑任务。
Manus 爆火出圈,引发 Agent 热潮!从自行理解任务、拆解步骤到选择工具并执行,这需要 Agent 具备强大的复杂工作流编排和任务处理能力,而工作流也是智能体的核心技术之一。
谷歌发布了1000亿文本-图像对数据集,是此前类似数据集的10倍,创下新纪录!基于新数据集,发现预训练Scaling Law,虽然对模型性能提升不明显,但对于小语种等其他指标提升明显。让ViT大佬翟晓华直呼新发现让人兴奋!
北京大学、上海人工智能实验室、南洋理工大学联合推出 DiffSensei,首个结合多模态大语言模型(MLLM)与扩散模型的定制化漫画生成框架。该框架通过创新的掩码交叉注意力机制与文本兼容的角色适配器,实现了对多角色外观、表情、动作的精确控制
本文构建了新的多轮组合图像检索数据集和评测基准FashionMT。其特点包括:(1)回溯性:每轮修改文本可能涉及历史参考图像信息(如保留特定属性),要求算法回溯利用多轮历史信息;(2)多样化:FashionMT包含的电商图像数量和类别分别是MT FashionIQ的14倍和30倍,且交互轮次数量接近其27倍,提供了丰富的多模态检索场景。