大语言模型火爆的今天,我们为什么还要拥抱世界模型?
大语言模型火爆的今天,我们为什么还要拥抱世界模型?多点发力,协同并进,才能让AI的成长有更多道路可走
多点发力,协同并进,才能让AI的成长有更多道路可走
大规模数据集和标准化评估基准显著促进了自然语言处理和计算机视觉领域的发展。然而,机器人领域在如何构建大规模数据集并建立可靠的评估体系方面仍面临巨大挑战。
众所周知,大语言模型(LLM)往往对硬件要求很高。
2025年斯坦福HAI报告重磅发布,456页深度剖析全球AI领域的最新趋势:中美顶级模型性能差距缩至0.3%,以DeepSeek为代表的模型强势崛起,逼近闭源巨头;推理成本暴降,小模型性能飙升,AI正变得更高效、更普惠。
Llama 4真要被锤爆了,这次是大模型竞技场(Chatbot Arena)官方亲自下场开怼:
大家翘首以盼的 Llama 4,用起来为什么那么拉跨?
多模态视频异常理解任务,又有新突破!
AI绘画总「翻车」,不是抓不住重点,就是细节崩坏?别愁!微软和港中文学者带来ImageGen-CoT技术,让AI像人一样思考推理,生成超惊艳画作,性能提升高达80%。
在信息检索系统中,搜索引擎的能力只是影响结果的一个方面,真正的瓶颈往往在于:用户的原始 query 本身不够好。
Q-Insight不再简单地让模型拟合人眼打分,而是将评分视作一种引导信号,促使模型深度思考图像质量的本质原因。有了会思考的“大脑”,视频云技术栈不仅得以重塑也让用户体验有了跃迁。