
浅谈领域模型训练
浅谈领域模型训练这篇文章对如何进行领域模型训练进行一个简单的探讨,主要内容是对 post-pretrain 阶段进行分析,后续的 Alignment 阶段就先不提了,注意好老生常谈的“数据质量”和“数据多样性”即可。
这篇文章对如何进行领域模型训练进行一个简单的探讨,主要内容是对 post-pretrain 阶段进行分析,后续的 Alignment 阶段就先不提了,注意好老生常谈的“数据质量”和“数据多样性”即可。
神经网络是一种灵活且强大的函数近似方法。而许多应用都需要学习一个相对于某种对称性不变或等变的函数。图像识别便是一个典型示例 —— 当图像发生平移时,情况不会发生变化。等变神经网络(equivariant neural network)可为学习这些不变或等变函数提供一个灵活的框架。
今年以来,具身智能正在成为学术界和产业界的热门领域,相关的产品和成果层出不穷。
AI,智能体,ADAS,元智能体搜索,模型训练
构建支持和增强人类能力的AI工具,而不是试图完全取代人类。
从一大堆图片中精准找图,有新招了!论文已经中了ECCV 2024。
Attention is all you need.
PolygonGNN是一种新型框架,用于学习包括单一和多重多边形在内的多边形几何体的表征,它通过异质可见图来捕捉多边形内外的空间关系,并利用图神经网络有效处理这些关系,以提高计算效率和泛化能力。该框架在五个数据集上表现出色,证明了其在捕捉多边形几何体有用表征方面的有效性。
现在,长上下文视觉语言模型(VLM)有了新的全栈解决方案 ——LongVILA,它集系统、模型训练与数据集开发于一体。
本期我们邀请到了 纽约大学计算机科学院博士 童晟邦 带来【多模态大模型:视觉为中心的探索】的主题分享。