
苹果官宣:在谷歌TPU上训练其AI模型
苹果官宣:在谷歌TPU上训练其AI模型公开文件显示,苹果开发自家的人工智能(AI)系统Apple Intelligence离不开谷歌定制芯片的支持。
公开文件显示,苹果开发自家的人工智能(AI)系统Apple Intelligence离不开谷歌定制芯片的支持。
随着人工智能(AI)技术的迅猛发展,特别是大语言模型(LLMs)如 GPT-4 和视觉语言模型(VLMs)如 CLIP 和 DALL-E,这些模型在多个技术领域取得了显著的进展。
只用1890美元、3700 万张图像,就能训练一个还不错的扩散模型。
适逢Llama 3.1模型刚刚发布,英伟达就发表了一篇技术博客,手把手教你如何好好利用这个强大的开源模型,为领域模型或RAG系统的微调生成合成数据。
用扩散模型搞社交信息推荐,怎么解决数据噪声难题?现有的一些自监督学习方法效果还是有限。
解决问题:语言智能体的动作通常由 Token(令牌,语言模型中表示单词/短语/汉字的最小符号单元)序列组成,直接将强化学习用于语言智能体进行策略优化的过程中,一般需要预定义可行动作集合,同时忽略了动作内 Token 细粒度信用分配问题,团队将 Agent 优化从动作层分解到 Token 层,为每个动作内 Token 提供更精细的监督,可在语言动作空间不受约束的环境中实现可控优化复杂度
一半以上的故障都归因于 GPU 及其高带宽内存。
自回归训练方式已经成为了大语言模型(LLMs)训练的标准模式, 今天介绍一篇来自阿联酋世界第一所人工智能大学MBZUAI的VILA实验室和CMU计算机系合作的论文,题为《FBI-LLM: Scaling Up Fully Binarized LLMs from Scratch via Autoregressive Distillation》
随着大型语言模型(LLMs)的进步,多模态大型语言模型(MLLMs)迅速发展。它们使用预训练的视觉编码器处理图像,并将图像与文本信息一同作为 Token 嵌入输入至 LLMs,从而扩展了模型处理图像输入的对话能力。这种能力的提升为自动驾驶和医疗助手等多种潜在应用领域带来了可能性。
开源多模态大模型或将开始腾飞。