
ECCV 2024|是真看到了,还是以为自己看到了?多模态大模型对文本预训练知识的过度依赖该解决了
ECCV 2024|是真看到了,还是以为自己看到了?多模态大模型对文本预训练知识的过度依赖该解决了随着大型语言模型(LLMs)的进步,多模态大型语言模型(MLLMs)迅速发展。它们使用预训练的视觉编码器处理图像,并将图像与文本信息一同作为 Token 嵌入输入至 LLMs,从而扩展了模型处理图像输入的对话能力。这种能力的提升为自动驾驶和医疗助手等多种潜在应用领域带来了可能性。
随着大型语言模型(LLMs)的进步,多模态大型语言模型(MLLMs)迅速发展。它们使用预训练的视觉编码器处理图像,并将图像与文本信息一同作为 Token 嵌入输入至 LLMs,从而扩展了模型处理图像输入的对话能力。这种能力的提升为自动驾驶和医疗助手等多种潜在应用领域带来了可能性。
开源多模态大模型或将开始腾飞。
用来运行 Llama 3 405B 优势明显。
KAN 在符号表示中领先,但 MLP 仍是多面手。
让模型知道自己擅长什么、不擅长什么是一个很重要的问题。
牛津剑桥的9次投毒导致模型崩溃的论文,已经遭到了诸多吐槽:这也能上Nature?学术圈则对此进行了进一步讨论,大家的观点殊途同归:合成数据被很多人视为灵丹妙药,但天下没有免费的午餐。
伴随着人工智能的高速发展,用户或创作者与平台间围绕AI侵权的纠纷时有发生。
具身智能是实现通用人工智能的必经之路,其核心是通过智能体与数字空间和物理世界的交互来完成复杂任务。
华盛顿大学和Allen AI最近发表的论文提出了一种新颖有趣的数据合成方法。他们发现,充分利用LLM的自回归特性,可以引导模型自动生成高质量的指令微调数据。
RNN每个step的隐状态都取决于上一个step的输出,这种连续的状态转移方式使得RNN天然带有位置信息。