AI作曲缺数据,浙大GTSinger数据集上线:适配所有歌声任务、带有真实乐谱
AI作曲缺数据,浙大GTSinger数据集上线:适配所有歌声任务、带有真实乐谱传统的歌声任务,如歌声合成,大多是在利用输入的歌词和乐谱生成高质量的歌声。随着深度学习的发展,人们希望实现可控和能个性化定制的歌声生成。
传统的歌声任务,如歌声合成,大多是在利用输入的歌词和乐谱生成高质量的歌声。随着深度学习的发展,人们希望实现可控和能个性化定制的歌声生成。
SafeEar是一种内容隐私保护的语音伪造检测方法,其核心是设计基于神经音频编解码器的解耦模型,分离语音声学与语义信息,仅利用声学信息检测,包括前端解耦模型、瓶颈层和混淆层、伪造检测器、真实环境增强四部分。
刚刚结束的第48届ICPC全球总决赛上,北大获得第一,清华获得第三,北交大获得第七,浙大获得第十。夺冠的三位北大信科学子,都来自图灵班,并且高中来自杭二中,师从同一位教练。
近期,浙大和 Salesforce 学者进一步发现:语言模型或许帮助有限,但是图像模型能够有效地迁移到时序预测领域。
字节和浙大联合研发的项目Loopy火了!
今天,KDD 2024大奖结果新鲜出炉!华人学者收获颇丰,浙大校友Jundong Li获新星奖,博士论文奖的冠亚军均有华人学者上榜。
本文对AI增强的VR在医疗应用中的技术细节、工作流程和下游应用进行了全面审视,并提出了一个系统性的分类方法,将相关工作分为医学视觉增强、VR医学数据处理和VR辅助干预三个主要类别,为未来跨学科研究提供了基础。
随着LLM不断迭代,偏好和评估数据中大量的人工标注逐渐成为模型扩展的显著障碍之一。Meta FAIR的团队最近提出了一种使用迭代式方法「自学成才」的评估模型训练方法,让70B参数的Llama-3-Instruct模型分数超过了Llama 3.1-405B。
作为基础的视觉语言任务,指代表达理解(referring expression comprehension, REC)根据自然语言描述来定位图中被指代的目标。REC 模型通常由三部分组成:视觉编码器、文本编码器和跨模态交互,分别用于提取视觉特征、文本特征和跨模态特征特征交互与增强。
LLM的数学推理能力缺陷得到了很多研究的关注,但最近浙大、中科院等机构的学者们提出,先进模型在视觉推理方面同样不足。为此他们提出了一种多模态的视觉推理基准,并设计了一种新颖的数据合成方法。