当地时间5月7日,ICLR 2024颁发了自大会举办以来的首个「时间检验奖」!
当地时间5月7日,ICLR 2024颁发了自大会举办以来的首个「时间检验奖」!
众多神经网络模型中都会有一个有趣的现象:不同的参数值可以得到相同的损失值。这种现象可以通过参数空间对称性来解释,即某些参数的变换不会影响损失函数的结果。基于这一发现,传送算法(teleportation)被设计出来,它利用这些对称变换来加速寻找最优参数的过程。尽管传送算法在实践中表现出了加速优化的潜力,但其背后的确切机制尚不清楚。
脑机接口(BCI)在科研和应用领域的进展在近期屡屡获得广泛的关注,大家通常都对脑机接口的应用前景有着广泛的畅享。
多层感知器(MLP),也被称为全连接前馈神经网络,是当今深度学习模型的基础构建块。MLP 的重要性无论怎样强调都不为过,因为它们是机器学习中用于逼近非线性函数的默认方法。
对于烟雾等动态三维物理现象的高效高质量采集重建是相关科学研究中的重要问题,在空气动力学设计验证,气象三维观测等领域有着广泛的应用前景。通过采集重建随时间变化的三维密场度序列,可以帮助科学家更好地理解与验证真实世界中的各类复杂物理现象。
一种全新的神经网络架构KAN,诞生了! 与传统的MLP架构截然不同,且能用更少的参数在数学、物理问题上取得更高精度。
就在最近,清华大学SuperBench团队的新一轮全球大模型评测结果出炉了!
近日,上海交通大学自然科学研究院/物理与天文学院/张江高等研究院洪亮课题组,在生物信息学和人工智能研究领域的国际权威学术期刊JCIM(Journal of Chemical Information and Modeling)上发表最新研究成果
以神经网络为基础的深度学习技术已经在诸多应用领域取得了有效成果
EdgeNet可以处理从干净的自然图像或嘈杂的对抗性图像中提取的边缘,产生鲁棒的特征,具有轻量级、即插即用等特点,能够无缝集成到现有的预训练深度网络中,训练成本低。