
首创像素空间推理,7B模型领先GPT-4o,让VLM能像人类一样「眼脑并用」
首创像素空间推理,7B模型领先GPT-4o,让VLM能像人类一样「眼脑并用」视觉语言模型(VLM)正经历从「感知」到「认知」的关键跃迁。 当OpenAI的o3系列通过「图像思维」(Thinking with Images)让模型学会缩放、标记视觉区域时,我们看到了多模态交互的全新可能。
来自主题: AI技术研报
6132 点击 2025-06-10 14:45
视觉语言模型(VLM)正经历从「感知」到「认知」的关键跃迁。 当OpenAI的o3系列通过「图像思维」(Thinking with Images)让模型学会缩放、标记视觉区域时,我们看到了多模态交互的全新可能。
港中文和清华团队推出Video-R1模型,首次将强化学习的R1范式应用于视频推理领域。通过升级的T-GRPO算法和混合图像视频数据集,Video-R1在视频空间推理测试中超越了GPT-4o,展现了强大的推理能力,并且全部代码和数据集均已开源。
Spatial-RAG结合了空间数据库和大型语言模型(LLM)的能力,能够处理复杂的空间推理问题。通过稀疏和密集检索相结合的方式,Spatial-RAG可以高效地从空间数据库中检索出满足用户查询的空间对象,并利用LLM的语义理解能力对这些对象进行排序和生成最终答案。
当涉及到空间推理任务时,LLMs 的表现却显得力不从心。空间推理不仅要求模型理解复杂的空间关系,还需要结合地理数据和语义信息,生成准确的回答。为了突破这一瓶颈,研究人员推出了 Spatial Retrieval-Augmented Generation (Spatial-RAG)—— 一个革命性的框架,旨在增强 LLMs 在空间推理任务中的能力。
视觉语言模型虽然强大,但缺乏空间推理能力,最近 Google 的新论文说它的 SpatialVLM 可以做,看看他们是怎么做的。