AI资讯新闻榜单内容搜索-计算机视觉

AITNT-国内领先的一站式人工智能新闻资讯网站
# 热门搜索 #
搜索: 计算机视觉
CVPR 2024|让图像扩散模型生成高质量360度场景,只需要一个语言模型

CVPR 2024|让图像扩散模型生成高质量360度场景,只需要一个语言模型

CVPR 2024|让图像扩散模型生成高质量360度场景,只需要一个语言模型

360 度场景生成是计算机视觉的重要任务,主流方法主要可分为两类,一类利用图像扩散模型分别生成 360 度场景的多个视角。由于图像扩散模型缺乏场景全局结构的先验知识,这类方法无法有效生成多样的 360 度视角,导致场景内主要的目标被多次重复生成,如图 1 的床和雕塑。

来自主题: AI技术研报
8658 点击    2024-06-11 10:02
模块化重构LLaVA,替换组件只需添加1-2个文件,开源TinyLLaVA Factory来了

模块化重构LLaVA,替换组件只需添加1-2个文件,开源TinyLLaVA Factory来了

模块化重构LLaVA,替换组件只需添加1-2个文件,开源TinyLLaVA Factory来了

TinyLLaVA 项目由清华大学电子系多媒体信号与智能信息处理实验室 (MSIIP) 吴及教授团队和北京航空航天大学人工智能学院黄雷老师团队联袂打造。清华大学 MSIIP 实验室长期致力于智慧医疗、自然语言处理与知识发现、多模态等研究领域。北航团队长期致力于深度学习、多模态、计算机视觉等研究领域。

来自主题: AI技术研报
8863 点击    2024-05-27 16:24
简单通用:视觉基础网络最高3倍无损训练加速,清华EfficientTrain++入选TPAMI 2024

简单通用:视觉基础网络最高3倍无损训练加速,清华EfficientTrain++入选TPAMI 2024

简单通用:视觉基础网络最高3倍无损训练加速,清华EfficientTrain++入选TPAMI 2024

近年来,「scaling」是计算机视觉研究的主角之一。随着模型尺寸和训练数据规模的增大、学习算法的进步以及正则化和数据增强等技术的广泛应用,通过大规模训练得到的视觉基础网络(如 ImageNet1K/22K 上训得的 Vision Transformer、MAE、DINOv2 等)已在视觉识别、目标检测、语义分割等诸多重要视觉任务上取得了令人惊艳的性能。

来自主题: AI技术研报
8401 点击    2024-05-22 13:33
李飞飞「空间智能」系列新进展,吴佳俊团队新「BVS」套件评估计算机视觉模型

李飞飞「空间智能」系列新进展,吴佳俊团队新「BVS」套件评估计算机视觉模型

李飞飞「空间智能」系列新进展,吴佳俊团队新「BVS」套件评估计算机视觉模型

在不久之前的 2024 TED 演讲中,李飞飞详细解读了 空间智能(Spatial Intelligence)概念。她对计算机视觉领域在数年间的快速发展感到欣喜并抱有极大热忱,并为此正在创建初创公司

来自主题: AI资讯
9470 点击    2024-05-21 15:31
瑞士信息与通信科技公司Assaia International研发AI视觉识别软件,提高机场空侧运营周转效率 | 瑞士创新100强

瑞士信息与通信科技公司Assaia International研发AI视觉识别软件,提高机场空侧运营周转效率 | 瑞士创新100强

瑞士信息与通信科技公司Assaia International研发AI视觉识别软件,提高机场空侧运营周转效率 | 瑞士创新100强

瑞士信息与通信科技公司Assaia International(以下简称Assaia)成立于2018年,该公司开发了一款AI视觉识别软件,能通过人工智能和计算机视觉实时识别并管理机场空侧运营状态,帮助机场、航空公司和地勤人员提升空侧运营管理效率,将航班准点率提高17%,将飞机周转时间缩短11%。

来自主题: AI资讯
8412 点击    2024-05-21 09:29
看透物体的3D表示和生成模型:NUS团队提出X-Ray

看透物体的3D表示和生成模型:NUS团队提出X-Ray

看透物体的3D表示和生成模型:NUS团队提出X-Ray

如今的生成式AI在人工智能领域迅猛发展,在计算机视觉中,图像和视频生成技术已日渐成熟,如Midjourney、Stable Video Diffusion [1]等模型广泛应用。然而,三维视觉领域的生成模型仍面临挑战。

来自主题: AI技术研报
3955 点击    2024-05-06 17:52
Meta 联合纽约大学和华盛顿大学提出MetaCLIP,带你揭开CLIP的高质量数据之谜。

Meta 联合纽约大学和华盛顿大学提出MetaCLIP,带你揭开CLIP的高质量数据之谜。

Meta 联合纽约大学和华盛顿大学提出MetaCLIP,带你揭开CLIP的高质量数据之谜。

自2021年诞生,CLIP已在计算机视觉识别系统和生成模型上得到了广泛的应用和巨大的成功。我们相信CLIP的创新和成功来自其高质量数据(WIT400M),而非模型或者损失函数本身。虽然3年来CLIP有大量的后续研究,但并未有研究通过对CLIP进行严格的消融实验来了解数据、模型和训练的关系。

来自主题: AI技术研报
10473 点击    2024-05-02 17:54
在12个视频理解任务中,Mamba先打败了Transformer

在12个视频理解任务中,Mamba先打败了Transformer

在12个视频理解任务中,Mamba先打败了Transformer

探索视频理解的新境界,Mamba 模型引领计算机视觉研究新潮流!传统架构的局限已被打破,状态空间模型 Mamba 以其在长序列处理上的独特优势,为视频理解领域带来了革命性的变革。

来自主题: AI技术研报
6073 点击    2024-04-30 18:28