
喂了几个月的垃圾推文,大模型得了「脑腐」,这病还治不好
喂了几个月的垃圾推文,大模型得了「脑腐」,这病还治不好天天刷推,大模型的脑子也会坏掉。 终于有研究证明,互联网上的烂内容会让大模型得「脑腐」。 相信许多读者对「脑腐」这个词并不陌生,长时间沉浸在碎片化的网络信息中,我们经常会感到注意力下降、思维变钝。
天天刷推,大模型的脑子也会坏掉。 终于有研究证明,互联网上的烂内容会让大模型得「脑腐」。 相信许多读者对「脑腐」这个词并不陌生,长时间沉浸在碎片化的网络信息中,我们经常会感到注意力下降、思维变钝。
今年,流匹配无疑是机器人学习领域的大热门:作为扩散模型的一种优雅的变体,流匹配凭借简单、好用的特点,成为了机器人底层操作策略的主流手段,并被广泛应用于先进的 VLA 模型之中 —— 无论是 Physical Intelligence 的 ,LeRobot 的 SmolVLA, 英伟达的 GR00T 和近期清华大学发布的 RDT2。
近年来,大语言模型(LLMs)以及多模态大模型(MLLMs)在多种场景理解和复杂推理任务中取得突破性进展。
在金融、医疗等高度敏感的应用场景中,拜占庭鲁棒联邦学习(BRFL)能够有效避免因数据集中存储而导致的隐私泄露风险,同时防止恶意客户端对模型训练的攻击。然而,即使是在模型更新的过程中,信息泄露的威胁仍然无法完全规避。为了解决这一问题,全同态加密(FHE)技术通过在密文状态下进行安全计算,展现出保护隐私信息的巨大潜力。
现有视觉语言大模型(VLMs)在多模态感知和推理任务上仍存在明显短板:1. 对图像中的细粒度视觉信息理解有限,视觉感知和推理能力未被充分激发;2. 强化学习虽能带来改进,但缺乏高质量、易扩展的 RL 数据。
大语言模型(LLM)不仅在推动通用自然语言处理方面发挥了关键作用,更重要的是,它们已成为支撑多种下游应用如推荐、分类和检索的核心引擎。尽管 LLM 具有广泛的适用性,但在下游任务中高效部署仍面临重大挑战。
不再依赖人工设计,让模型真正学会管理记忆。
近日刚好得了空闲,在研读 Anthropic 官方技术博客和一些相关论文,主题是「Agent 与 Context 工程」。2025 年 6 月以来,原名为「Prompt Engineering」的提示词工程,在 AI Agent 概念日趋火热的应用潮中,
在视频生成与理解的赛道上,常常见到分头发力的模型:有的专注做视频生成,有的专注做视频理解(如问答、分类、检索等)。而最近,一个开源项目 UniVid,提出了一个「融合」方向:把理解 + 生成融为一体 —— 他们希望用一个统一的模型,兼顾「看懂视频」+「生成视频」的能力。
复旦大学NLP实验室研发Game-RL,利用游戏丰富视觉元素和明确规则生成多模态可验证推理数据,通过强化训练提升视觉语言模型的推理能力。创新性地提出Code2Logic方法,系统化合成游戏任务数据,构建GameQA数据集,验证了游戏数据在复杂推理训练中的优势。