AI资讯新闻榜单内容搜索-训练

AITNT-国内领先的一站式人工智能新闻资讯网站
# 热门搜索 #
搜索: 训练
从掩码生成到「再掩码」训练:RemeDi让扩散语言模型学会自我纠正与反思

从掩码生成到「再掩码」训练:RemeDi让扩散语言模型学会自我纠正与反思

从掩码生成到「再掩码」训练:RemeDi让扩散语言模型学会自我纠正与反思

近期,扩散语言模型备受瞩目,提供了一种不同于自回归模型的文本生成解决方案。为使模型能够在生成过程中持续修正与优化中间结果,西湖大学 MAPLE 实验室齐国君教授团队成功训练了具有「再掩码」能力的扩散语言模型(Remasking-enabled Diffusion Language Model, RemeDi 9B)。

来自主题: AI技术研报
4732 点击    2025-10-17 09:41
当Search Agent遇上不靠谱搜索结果,清华团队祭出自动化红队框架SafeSearch

当Search Agent遇上不靠谱搜索结果,清华团队祭出自动化红队框架SafeSearch

当Search Agent遇上不靠谱搜索结果,清华团队祭出自动化红队框架SafeSearch

在 AI 发展的新阶段,大模型不再局限于静态知识,而是可以通过「Search Agent」的形式实时连接互联网。搜索工具让模型突破了训练时间的限制,但它们返回的并非总是高质量的资料:一个低质量网页、一条虚假消息,甚至是暗藏诱导的提示,都可能在用户毫无察觉的情况下被模型「采纳」,进而生成带有风险的回答。

来自主题: AI技术研报
6574 点击    2025-10-17 09:33
基础模型已颠覆科研,进入第五范式!港科大综述113篇论文 | NeurIPS'25

基础模型已颠覆科研,进入第五范式!港科大综述113篇论文 | NeurIPS'25

基础模型已颠覆科研,进入第五范式!港科大综述113篇论文 | NeurIPS'25

基础模型(FM)是一种在海量数据上训练的人工智能系统,具备强大的通用性和跨模态能力。港科大最新发表的论文显示:FM可能引领科学进入第五范式,但大模型的偏见、幻觉等问题仍需正视。

来自主题: AI技术研报
6134 点击    2025-10-16 15:01
NTU等联合提出A-MemGuard:为AI记忆上锁,投毒攻击成功率暴降95%

NTU等联合提出A-MemGuard:为AI记忆上锁,投毒攻击成功率暴降95%

NTU等联合提出A-MemGuard:为AI记忆上锁,投毒攻击成功率暴降95%

在AI智能体日益依赖记忆系统的时代,一种新型攻击悄然兴起:记忆投毒。A-MemGuard作为首个专为LLM Agent记忆模块设计的防御框架,通过共识验证和双重记忆结构,巧妙化解上下文依赖与自我强化错误循环的难题,让AI从被动受害者转为主动守护者,成功率高达95%以上。

来自主题: AI技术研报
6368 点击    2025-10-16 14:51
NeurIPS 2025 Spotlight | 条件表征学习:一步对齐表征与准则

NeurIPS 2025 Spotlight | 条件表征学习:一步对齐表征与准则

NeurIPS 2025 Spotlight | 条件表征学习:一步对齐表征与准则

一张图片包含的信息是多维的。例如下面的图 1,我们至少可以得到三个层面的信息:主体是大象,数量有两头,环境是热带稀树草原(savanna)。然而,如果由传统的表征学习方法来处理这张图片,比方说就将其送入一个在 ImageNet 上训练好的 ResNet 或者 Vision Transformer,往往得到的表征只会体现其主体信息,也就是会简单地将该图片归为大象这一类别。这显然是不合理的。

来自主题: AI技术研报
6106 点击    2025-10-16 14:43
ICCV 2025 | FDAM:告别模糊视界,源自电路理论的即插即用方法让视觉Transformer重获高清细节

ICCV 2025 | FDAM:告别模糊视界,源自电路理论的即插即用方法让视觉Transformer重获高清细节

ICCV 2025 | FDAM:告别模糊视界,源自电路理论的即插即用方法让视觉Transformer重获高清细节

针对视觉 Transformer(ViT)因其固有 “低通滤波” 特性导致深度网络中细节信息丢失的问题,我们提出了一种即插即用、受电路理论启发的 频率动态注意力调制(FDAM)模块。它通过巧妙地 “反转” 注意力以生成高频补偿,并对特征频谱进行动态缩放,最终在几乎不增加计算成本的情况下,大幅提升了模型在分割、检测等密集预测任务上的性能,并取得了 SOTA 效果。

来自主题: AI技术研报
5597 点击    2025-10-16 14:35
不再靠「猜坐标」!颜水成团队等联合发布PaDT多模态大模型:实现真正的多模态表征输出

不再靠「猜坐标」!颜水成团队等联合发布PaDT多模态大模型:实现真正的多模态表征输出

不再靠「猜坐标」!颜水成团队等联合发布PaDT多模态大模型:实现真正的多模态表征输出

近年来,多模态大语言模型(Multimodal Large Language Models, MLLMs)在图文理解、视觉问答等任务上取得了令人瞩目的进展。然而,当面对需要精细空间感知的任务 —— 比如目标检测、实例分割或指代表达理解时,现有模型却常常「力不从心」。

来自主题: AI技术研报
8597 点击    2025-10-16 12:31
清华&巨人网络首创MoE多方言TTS框架,数据代码方法全开源

清华&巨人网络首创MoE多方言TTS框架,数据代码方法全开源

清华&巨人网络首创MoE多方言TTS框架,数据代码方法全开源

无论是中文的粤语、闽南话、吴语,还是欧洲的荷兰比尔茨语方言、法国奥克语,亦或是非洲和南美的地方语言,方言都承载着独特的音系与文化记忆,是人类语言多样性的重要组成部分。然而,许多方言正在快速消失,语音技术如果不能覆盖这些语言,势必加剧数字鸿沟与文化失声。

来自主题: AI技术研报
7040 点击    2025-10-16 12:08