哈佛斯坦福MIT等机构首次提出「精度感知」scaling law,揭示了精度、参数规模、数据量之间的统一关系。数据量增加,模型对量化精度要求随之提高,这预示着AI领域低精度加速的时代即将结束!
哈佛斯坦福MIT等机构首次提出「精度感知」scaling law,揭示了精度、参数规模、数据量之间的统一关系。数据量增加,模型对量化精度要求随之提高,这预示着AI领域低精度加速的时代即将结束!
卡内基梅隆大学提出了视频生成模型加速方法Run-Length Tokenization(RLT),被NeurIPS 2024选为Spotlight论文。 在精度几乎没有损失的前提下,RLT可以让模型训练和推理速度双双提升。
近日,天桥脑科学研究院正式启动了一项面向高校的合作研究基金计划,围绕人工智能长期记忆、生成式模型等前沿领域开展深入研究。
4-bit量化,能让现有反学习/机器遗忘技术失灵!
最近,Nature上的一项研究,全面驳斥了LLM具有类人推理能力的说法。研究者设定的「人类亲吻难题」把7个大模型彻底绕晕。最终研究者表示,与其说LLM是科学理论,不如说它们更接近工具,比如广义导数。
通过过程奖励模型(PRM)在每一步提供反馈,并使用过程优势验证器(PAV)来预测进展,从而优化基础策略,该方法在测试时搜索和在线强化学习中显示出比传统方法更高的准确性和计算效率,显著提升了解决复杂问题的能力。
本文介绍了来自北京大学王选计算机研究所的王勇涛团队的最新研究成果 VL-SAM。针对开放场景,该篇工作提出了一个基于注意力图提示的免训练开放式目标检测和分割框架 VL-SAM,在无需训练的情况下,取得了良好的开放式 (Open-ended) 目标检测和实例分割结果,论文已被 NeurIPS 2024 录用。
近日,中科大王杰教授团队 (MIRA Lab) 针对离线强化学习数据集存在多类数据损坏这一复杂的实际问题,提出了一种鲁棒的变分贝叶斯推断方法,有效地提升了智能决策模型的鲁棒性,为机器人控制、自动驾驶等领域的鲁棒学习奠定了重要基础。论文发表在 CCF-A 类人工智能顶级会议 Neural Information Processing Systems(NeurIPS 2024)。
利用概念激活向量破解大模型的安全对齐,揭示LLM重要安全风险漏洞。
预测金融市场和股票价格变动需分析公司表现、历史价格、行业事件及人类因素(如社交媒体和新闻报道)。