
从架构、工艺到能效表现,全面了解LLM硬件加速,这篇综述就够了
从架构、工艺到能效表现,全面了解LLM硬件加速,这篇综述就够了大语言模型(LLM)的发展同时往往伴随着硬件加速技术的进化,本文对使用 FPGA、ASIC 等芯片的模型性能、能效表现来了一次全面概览。
大语言模型(LLM)的发展同时往往伴随着硬件加速技术的进化,本文对使用 FPGA、ASIC 等芯片的模型性能、能效表现来了一次全面概览。
近期,浙大和 Salesforce 学者进一步发现:语言模型或许帮助有限,但是图像模型能够有效地迁移到时序预测领域。
斯坦福大学的最新研究通过大规模实验发现,尽管大型语言模型(LLMs)在新颖性上优于人类专家的想法,但在可行性方面略逊一筹,还需要进一步研究以提高其实用性。
大型语言模型(LLMs)虽然进展很快,很强大,但是它们仍然存在会产生幻觉、生成有害内容和不遵守人类指令等问题。一种流行的解决方案就是基于【自我纠正】,大概就是看自己输出的结果,自己反思一下有没有错,如果有错就自己改正。目前自己纠正还是比较关注于让大模型从错误中进行学习。
大语言模型(如 GPT-4)具备强大的语言处理能力,但其独立运作时仍存在局限性,如无法进行复杂计算,获取不到实时信息,难以提供专业定制化功能等。而大语言模型的工具调用能力使其不仅限于文字处理,更能提供全面、实时、精确的服务,极大地扩展了其应用范围和实际价值。
语言模型的 AlphaGo 时刻?
随着大语言模型的飞速发展,角色扮演智能体(RPAs)正逐渐成为 AI 领域的热门话题。
近日 Aleph Alpha 开始将其商业重点从开发大型语言模型转向生成式 AI 操作系统和咨询服务。
我向来喜欢折腾新玩意。作为一个语言学习者,AI大语言模型出来以后我没少使用它。无论是备课还是日常工作和学习,大语言模型提供了各种各样的可能性,大大提升了效率。
本文提出了一种名为MedUnA的方法,旨在解决医疗图像分类中因缺乏标注数据而导致的监督学习挑战。MedUnA利用视觉-语言模型(VLMs)中的视觉与文本对齐特性,通过无监督学习来适应医疗图像分类任务。