3D领域的NanoBanana也来了,万物皆可用嘴操控。
3D领域的NanoBanana也来了,万物皆可用嘴操控。周末看到一个好玩的东西。 3D领域的NanoBanana也来了。 中间有一句比较重要的功能,是我觉得非常有意思的: 可以通过提示进行局部编辑。 玩过NanoBanana的肯定很熟了。 算了补全了一块有
周末看到一个好玩的东西。 3D领域的NanoBanana也来了。 中间有一句比较重要的功能,是我觉得非常有意思的: 可以通过提示进行局部编辑。 玩过NanoBanana的肯定很熟了。 算了补全了一块有
IDEA研究院张磊团队与香港科技大学谭平团队联合推出SceneMaker框架,有望攻克这一问题。 它以视启未来的万物检测模型DINO-X与光影焕像的万物3D生成模型Triverse为基础,实现了从任意开放世界图像(室内/室外/合成图等)到带Mesh的3D场景的完整重建。
上海交通大学、波恩大学等院校的研究团队全面总结了当前机器人技术中常用的场景表示方法。这些方法包括传统的点云、体素栅格、符号距离函数以及场景图等传统几何表示方式,同时也涵盖了最新的神经网络表示技术,如神经辐射场、3D 高斯散布模型以及新兴的 3D 基础模型。
ChatGPT也推出「防沉迷系统」了?如果你习惯用缩写、语气太嫩,或者仅仅是作息不规律,都可能被判定为未成年!想恢复成人权限,代价是上传你的脸部3D扫描数据。不需要等到未来,欢迎来到2026年的「行为算命」时代。
2025年,风光无限的机器人们在Demo中大秀绝活,从叠衣服、工厂和物流站分拣包裹,到零售店卖货……它们忙碌的身影存在于各种各样的场景中。但回到现实世界,具身智能真正参与的生活和生产环节,却少之又少。
3D模型的实例分割一直受限于稀缺的训练数据与高昂的标注成本,训练效果有待提升。
在3D角色动画创作领域,高质量动作资产的匮乏长期制约着产出的上限。
随着 AIGC(Artificial Intelligence Generated Content) 的爆发,我们已经习惯了像 Sora 或 Wan 这样的视频生成模型能够理解「一只宇航员在火星后空翻」这样天马行空的指令。然而,3D 人体动作生成(3D MoGen)领域却稍显滞后。
让静态3D模型「动起来」一直是图形学界的难题:物理模拟太慢,生成模型又不讲「物理基本法」。近日,北京大学团队提出DragMesh,通过「语义-几何解耦」范式与双四元数VAE,成功将核心生成模块的算力消耗降低至SOTA模型的1/10,同时将运动轴预测误差降低了10倍。
我们希望具身机器人真正走进真实世界,尤其走进每个人的家里,帮我们完成浇花、收纳、清洁等日常任务。但家庭环境不像实验室那样干净、单一、可控:物体种类多、摆放杂、随时会变化,这让机器人在三维物理世界中「看懂并做好」变得更难。