
LLM已进入「组装」时代,CAIS复合人工智能系统来了
LLM已进入「组装」时代,CAIS复合人工智能系统来了2024年,伯克利人工智能研究中心(BAIR)率先提出了一个新概念——复合人工智能系统(Compound AI Systems,简称CAIS)。这个看似简单的术语背后,蕴含着AI系统架构的根本性改变:不再依赖单一LLM的"超级大脑",而是构建多组件协同的"智能生态系统"。
2024年,伯克利人工智能研究中心(BAIR)率先提出了一个新概念——复合人工智能系统(Compound AI Systems,简称CAIS)。这个看似简单的术语背后,蕴含着AI系统架构的根本性改变:不再依赖单一LLM的"超级大脑",而是构建多组件协同的"智能生态系统"。
图灵奖得主Yoshua Bengio重磅官宣创办非营利机构LawZero,致力研发「设计即安全」的AI系统,以对抗AI军备竞赛带来的风险。主张构建不具行动性、以理解世界为目标的可信AI。
在多智能体AI系统中,一旦任务失败,开发者常陷入「谁错了、错在哪」的谜团。PSU、杜克大学与谷歌DeepMind等机构首次提出「自动化失败归因」,发布Who&When数据集,探索三种归因方法,揭示该问题的复杂性与挑战性。
在三方图灵测试中,UCSD的研究人员评估了当前的AI模型,证明LLM已通过图灵测试。在测试中,同时与人及AI系统进行5分钟对话,然后判断哪位是「真人」。结果,AI竟然比「真人」还像人:
为了进一步挑战AI系统,大家已经开始研究一些最困难的竞赛中的问题,特别是国际奥林匹克竞赛和算法挑战。
华人学者、斯坦福大学副教授 James Zou 领导的团队提出了 TextGrad ,通过文本自动化“微分”反向传播大语言模型(LLM)文本反馈来优化 AI 系统。只需几行代码,你就可以自动将用于分类数据的“逐步推理”提示转换为一个更复杂的、针对特定应用的提示。
历史上首个能通过双盲同行评审的AI系统Carl诞生了。它是Autoscience研究所的成果,能完成从构思到展示的整个研究过程,撰写的论文已被国际顶会ICLR接受,其能力令人惊叹。
近日,来自哥大的研究人员开发出了一种新AI系统,让机器人通过普通摄像头和深度神经网络实现自我建模、运动规划和自我修复,突破了传统机器人依赖工程师调整的局限,使机器人能像人类一样自主学习和适应环境变化,为具身智能发展带来新范式。
复旦新研究揭示了AI系统自我复制的突破性进展,表明当前的LLM已具备在没有人类干预的情况下自我克隆的能力。这不仅是AI超越人类的一大步,也为「流氓AI」埋下了隐患,带来前所未有的安全风险。
AI系统生成的内容是否享有版权保护,美国政府机构在最新法规指引中给出了他们的看法。