浙大00后硕士破局AI记忆难题!新技术让长对话响应速度快十余倍
浙大00后硕士破局AI记忆难题!新技术让长对话响应速度快十余倍走上了堪称是“最佳 AI 转型路径”之后,他也在读研期间和合作者针对 AI 记忆开展了一项研究,借此发明出一种名为 LightMem(轻量记忆)的技术。在 LongMemEval 和 LoCoMo 这两个专门用于考察 AI 长期记忆能力的基准测试上,LightMem 回答问题的准确率全面超越之前的冠军模型,最高提升了 7% 以上,在某些数据集上甚至提升了将近 30%。
走上了堪称是“最佳 AI 转型路径”之后,他也在读研期间和合作者针对 AI 记忆开展了一项研究,借此发明出一种名为 LightMem(轻量记忆)的技术。在 LongMemEval 和 LoCoMo 这两个专门用于考察 AI 长期记忆能力的基准测试上,LightMem 回答问题的准确率全面超越之前的冠军模型,最高提升了 7% 以上,在某些数据集上甚至提升了将近 30%。
在 Text-to-Video / Image-to-Video 技术突飞猛进的今天,我们已经习惯了这样一个常识: 视频生成的第一帧(First Frame)只是时间轴的起点,是后续动画的起始画面。
记忆,或是 AI 从「即时回答工具」迈向「个性化超级助手」的关键突破
当你阅读《红楼梦》《哈利·波特》《百年孤独》等长篇小说时,读着读着可能就忘记前面讲了什么,有时还会搞混人物关系。AI 在阅读长文章的时候也存在类似问题,当文章太长时它也会卡主,要么读得特别慢,要么记不住前面的内容。
人工智能在过去的十年中,以惊人的速度革新了信息处理和内容生成的方式。然而,无论是大语言模型(LLM)本体,还是基于检索增强生成(RAG)的系统,在实际应用中都暴露出了一个深层的局限性:缺乏跨越时间的、可演化的、个性化的“记忆”。它们擅长瞬时推理,却难以实现持续积累经验、反思历史、乃至真正像人一样成长的目标。
前两天,Google发了一个非常有趣的论文: 《Nested Learning: The Illusion of Deep Learning Architectures》
EverMind 团队近日宣布正式发布其旗舰产品 EverMemOS,这是一款面向人工智能智能体的世界级长期记忆操作系统。它旨在成为未来智能体的数据基础设施,为 AI 赋予持久、连贯、可进化的 “灵魂”。
我深入研究了 Supermemory 的技术方案后,发现它和市面上其他记忆解决方案有本质区别。大多数所谓的"记忆"系统,本质上只是一个数据库,提供基本的增删改查功能。你可以保存一个实体,给它设定用户范围,然后查询出来。这很有用,但这只是基础功能,任何数据库都能做到。
最近在开源社区闲逛,发现字节悄悄放出了一个叫 MineContext 的项目。和字节Viking团队的小伙伴聊天时,我了解到一个挺有意思的故事:MineContext 团队其实在今年四五月份就有了初步想法,甚至更早之前就在思考:如何围绕个人的完整记忆来做应用。
不再依赖人工设计,让模型真正学会管理记忆。