
多步推理碾压GPT-4o,无需训练性能提升10%!斯坦福开源通用框架OctoTools
多步推理碾压GPT-4o,无需训练性能提升10%!斯坦福开源通用框架OctoToolsOctoTools通过标准化工具卡和规划器,帮助LLMs高效完成复杂任务,无需额外训练。在16个任务中表现优异,比其他方法平均准确率高出9.3%,尤其在多步推理和工具使用方面优势明显。
OctoTools通过标准化工具卡和规划器,帮助LLMs高效完成复杂任务,无需额外训练。在16个任务中表现优异,比其他方法平均准确率高出9.3%,尤其在多步推理和工具使用方面优势明显。
Manus 爆火出圈,引发 Agent 热潮!从自行理解任务、拆解步骤到选择工具并执行,这需要 Agent 具备强大的复杂工作流编排和任务处理能力,而工作流也是智能体的核心技术之一。
在32道高等数学测试中,LLM表现出色,平均能得分90.4(按百分制计算)。GPT-4o和Mistral AI更是几乎没错!向量计算、几何分析、积分计算、优化问题等,高等AI模型轻松拿捏。研究发现,再提示(Re-Prompting)对提升准确率至关重要。
o3-mini成功挑战图论中专家级证明,还得到了陶哲轩盛赞。经过实测后,他总结称LLM并非是数学研究万能解法,其价值取决于问题得性质和调教AI的方式。
首次将DeepSeek同款RLVR应用于全模态LLM,含视频的那种!
为什么必须像评估劳动力一样评估LLM代理,而不仅仅是评估软件。
本文介绍了一项突破性的AI推理技术创新——思维草图(SoT)框架。该框架从人类认知过程中获取灵感,通过一个200M大小的路由模型将LLM引导到概念链、分块符号化和专家词汇三种推理范式,巧妙地解决了大语言模型推理过程中的效率瓶颈。
ChatGPT 平地一声雷,打乱了很多人、很多行业的轨迹和节奏。这两年模型发布的数量更是数不胜数,其中文本大模型就占据了 AIGC 赛道的半壁江山。关注我的家人们永远都是抢占 AI 高地的冲锋者。
LLM 在生成 long CoT 方面展现出惊人的能力,例如 o1 已能生成长度高达 100K tokens 的序列。然而,这也给 KV cache 的存储带来了严峻挑战。
近年来,大语言模型(LLM) 的快速发展正推动人工智能迈向新的高度。像 DeepSeek-R1 这样的模型因其强大的理解和生成能力,已经在 对话生成、代码编写、知识问答 等任务中展现出了卓越的表现。