
3.5亿参数模型媲美ChatGPT-4o?Liquid AI发布的日英翻译模型给出答案
3.5亿参数模型媲美ChatGPT-4o?Liquid AI发布的日英翻译模型给出答案在大模型的竞赛中,参数规模往往被视为性能的决定性因素。但近期,Liquid AI 的研究团队提出了一个不同寻常的案例:一个仅有 3.5 亿参数的模型,经过微调后,竟能在中短上下文的实时日语英语翻译任务上,与 GPT-4o 竞争。
在大模型的竞赛中,参数规模往往被视为性能的决定性因素。但近期,Liquid AI 的研究团队提出了一个不同寻常的案例:一个仅有 3.5 亿参数的模型,经过微调后,竟能在中短上下文的实时日语英语翻译任务上,与 GPT-4o 竞争。
本次投资人访谈,我们邀请到观正资本合伙人林子钧。LiquidMetal Ventures (观正资本) 作为专注于科技前沿领域的投资机构,始终以全球化视野捕捉技术变革中的投资机遇。
近年来大语言模型(LLM)的迅猛发展正推动人工智能迈向多模态融合的新纪元。然而,现有主流多模态大模型(MLLM)依赖复杂的外部视觉模块(如 CLIP 或扩散模型),导致系统臃肿、扩展受限,成为跨模态智能进化的核心瓶颈。
2024年大模型融资火热,全球超4000亿。2024年——大模型创企正与巨额融资深度绑定。仅在2024年最后一个月,就有xAI拿下60亿美元、阶跃星辰的数亿美元、Perplexity AI的5亿美元、智谱AI 30亿元、Liquid AI的2.5亿美元……
挑战Transformer,MIT初创团队推出LFM(Liquid Foundation Model)新架构模型爆火。
就在刚刚,MIT系初创公司Liquid AI团队官宣:推出首批多模态非Transformer模型——液体基础模型LFM。
一个受线虫启发的全新架构,三大「杯型」均能实现 SOTA 性能,资源高度受限环境也能部署。移动机器人可能更需要一个虫子的大脑。