
算力终结者来了!华人天团「降维打击」注意力瓶颈,AI狂飙进对数时代
算力终结者来了!华人天团「降维打击」注意力瓶颈,AI狂飙进对数时代注意力机制的「平方枷锁」,再次被撬开!一招Fenwick树分段,用掩码矩阵,让注意力焕发对数级效率。更厉害的是,它无缝对接线性注意力家族,Mamba-2、DeltaNet 全员提速,跑分全面开花。长序列处理迈入log时代!
注意力机制的「平方枷锁」,再次被撬开!一招Fenwick树分段,用掩码矩阵,让注意力焕发对数级效率。更厉害的是,它无缝对接线性注意力家族,Mamba-2、DeltaNet 全员提速,跑分全面开花。长序列处理迈入log时代!
曾撼动Transformer统治地位的Mamba作者之一Tri Dao,刚刚带来新作——提出两种专为推理“量身定制”的注意力机制。
Nemotron-H模型混合了Transformer和Mamba架构,使长文本推理速度提升3倍,同时还能保持高性能,开源版本包括8B和56B尺寸。训练过程采用FP8训练和压缩技术,进一步提高了20%推理速度
2025 年 3 月 11 日,语音生成初创公司 Cartesia 宣布完成 6400 万美元 A 轮融资,距其 2700 万美元种子轮融资仅过去不到 3 个月。本轮融资由 Kleiner Perkins 领投,Lightspeed、Index、A*、Greycroft、Dell Technologies Capital 和 Samsung Ventures 等跟投。
在过去的一两年中,Transformer 架构不断面临来自新兴架构的挑战。
首个基于混合Mamba架构的超大型推理模型来了!就在刚刚,腾讯宣布推出自研深度思考模型混元T1正式版,并同步在腾讯云官网上线。对标o1、DeepSeek R1之外,值得关注的是,混元T1正式版采用的是Hybrid-Mamba-Transformer融合模式——
近年来,大型语言模型(LLM)通过大量计算资源在推理阶段取得了解决复杂问题的突破。推理速度已成为 LLM 架构的关键属性,市场对高效快速的 LLM 需求不断增长。
CVPR 2025,混合新架构MambaVision来了!Mamba+Transformer混合架构专门为CV应用设计。MambaVision 在Top-1精度和图像吞吐量方面实现了新的SOTA,显著超越了基于Transformer和Mamba的模型。
Mamba 这种状态空间模型(SSM)被认为是 Transformer 架构的有力挑战者。近段时间,相关研究成果接连不断。而就在不久前,Mamba 作者 Albert Gu 与 Karan Goel、Chris Ré、Arjun Desai、Brandon Yang 一起共同创立的 Cartesia 获得 2700 万美元种子轮融资。
Mamba 是一种具有线性计算复杂度的状态空间模型,它能够以线性计算复杂度实现对输入序列的有效建模,在近几个月受到了广泛的关注。