
腾讯押注非Transformer!推理模型混合Mamba也能搞,深度思考也能秒回
腾讯押注非Transformer!推理模型混合Mamba也能搞,深度思考也能秒回首个基于混合Mamba架构的超大型推理模型来了!就在刚刚,腾讯宣布推出自研深度思考模型混元T1正式版,并同步在腾讯云官网上线。对标o1、DeepSeek R1之外,值得关注的是,混元T1正式版采用的是Hybrid-Mamba-Transformer融合模式——
首个基于混合Mamba架构的超大型推理模型来了!就在刚刚,腾讯宣布推出自研深度思考模型混元T1正式版,并同步在腾讯云官网上线。对标o1、DeepSeek R1之外,值得关注的是,混元T1正式版采用的是Hybrid-Mamba-Transformer融合模式——
近年来,大型语言模型(LLM)通过大量计算资源在推理阶段取得了解决复杂问题的突破。推理速度已成为 LLM 架构的关键属性,市场对高效快速的 LLM 需求不断增长。
CVPR 2025,混合新架构MambaVision来了!Mamba+Transformer混合架构专门为CV应用设计。MambaVision 在Top-1精度和图像吞吐量方面实现了新的SOTA,显著超越了基于Transformer和Mamba的模型。
Mamba 这种状态空间模型(SSM)被认为是 Transformer 架构的有力挑战者。近段时间,相关研究成果接连不断。而就在不久前,Mamba 作者 Albert Gu 与 Karan Goel、Chris Ré、Arjun Desai、Brandon Yang 一起共同创立的 Cartesia 获得 2700 万美元种子轮融资。
Mamba 是一种具有线性计算复杂度的状态空间模型,它能够以线性计算复杂度实现对输入序列的有效建模,在近几个月受到了广泛的关注。
浙大、腾讯优图、华中科技大学的团队,提出轻量化MobileMamba! 既良好地平衡了效率与效果,推理速度远超现有基于Mamba的模型。
RNN模型在长上下文中表现不佳?近日,来自清华的研究团队对此进行了深入的实验分析,结果表明:不是RNN的锅。
在自然语言处理、语音识别和时间序列分析等众多领域中,序列建模是一项至关重要的任务。然而,现有的模型在捕捉长程依赖关系和高效建模序列方面仍面临诸多挑战。
会议组织者都是 NLP 头部科学家,在语言建模方面有着相当的成果。
顶流新会议首届COLM成功举办,Mamba等4篇论文获得杰出论文奖。