AI资讯新闻榜单内容搜索-RAG

AITNT-国内领先的一站式人工智能新闻资讯网站
# 热门搜索 #
搜索: RAG
RAG不会过时,但你需要这10个上下文处理技巧|Context Engineering系列一

RAG不会过时,但你需要这10个上下文处理技巧|Context Engineering系列一

RAG不会过时,但你需要这10个上下文处理技巧|Context Engineering系列一

RAG效果不及预期,试试这10个上下文处理优化技巧。对大部分开发者来说,搭一个RAG或者agent不难,怎么把它优化成生产可用的状态最难。在这个过程中,检索效率、准确性、成本、响应速度,都是重点关注问题。

来自主题: AI技术研报
7425 点击    2025-11-29 10:03
为什么记忆成为下一代 AI 的「核心变量」 | GAIR Live 20

为什么记忆成为下一代 AI 的「核心变量」 | GAIR Live 20

为什么记忆成为下一代 AI 的「核心变量」 | GAIR Live 20

人工智能在过去的十年中,以惊人的速度革新了信息处理和内容生成的方式。然而,无论是大语言模型(LLM)本体,还是基于检索增强生成(RAG)的系统,在实际应用中都暴露出了一个深层的局限性:缺乏跨越时间的、可演化的、个性化的“记忆”。它们擅长瞬时推理,却难以实现持续积累经验、反思历史、乃至真正像人一样成长的目标。

来自主题: AI技术研报
7307 点击    2025-11-29 09:56
RAG效果要提升,先搞定高质量Context Pruning

RAG效果要提升,先搞定高质量Context Pruning

RAG效果要提升,先搞定高质量Context Pruning

Context Pruning如何结合rerank,优化RAG上下文?

来自主题: AI技术研报
8464 点击    2025-11-28 10:05
RAG被判死刑:Google用一行API架空工程师!

RAG被判死刑:Google用一行API架空工程师!

RAG被判死刑:Google用一行API架空工程师!

Google宣判RAG死刑!那条曾让无数工程师自豪的技术链,如今只剩下一行API调用。Gemini的File Search,把检索、分块、索引、引用,全都封进了模型内部。开发者不再需要理解流程,只需要上传文件。当智能被自动化吞并,工程师第一次发现,自己也成了被自动化的一部分。

来自主题: AI技术研报
10116 点击    2025-11-26 15:14
告别「一条路走到黑」:通过自我纠错,打造更聪明的Search Agent

告别「一条路走到黑」:通过自我纠错,打造更聪明的Search Agent

告别「一条路走到黑」:通过自我纠错,打造更聪明的Search Agent

为了同时解决知识的实时性和推理的复杂性这两大挑战,搜索智能体(Search Agent)应运而生。它与 RAG 的核心区别在于,Search Agent 能够通过与实时搜索引擎进行多轮交互来分解并执行复杂任务。这种能力在人物画像构建,偏好搜索等任务中至关重要,因为它能模拟人类专家进行深度、实时的资料挖掘。

来自主题: AI技术研报
6414 点击    2025-11-18 14:39
Zleap技术解密:后RAG时代已来,SAG重新定义AI搜索

Zleap技术解密:后RAG时代已来,SAG重新定义AI搜索

Zleap技术解密:后RAG时代已来,SAG重新定义AI搜索

大家好,我是Jomy,是智跃Zleap的CEO,也是Zleap产品和技术的主要设计者。此前在报道中,我曾粗略介绍过Zleap产品背后的技术:一个能帮助CEO自动整理、总结海量企业内部信息的智能Agent。今天,我要正式为大家介绍驱动这个Agent的底层技术:SAG。

来自主题: AI技术研报
9487 点击    2025-11-18 10:40
Memory和RAG的区别在哪?用「上下文工程」做出个性化 AI(谷歌白皮书精读)

Memory和RAG的区别在哪?用「上下文工程」做出个性化 AI(谷歌白皮书精读)

Memory和RAG的区别在哪?用「上下文工程」做出个性化 AI(谷歌白皮书精读)

谷歌在第三天发布了《上下文工程:会话与记忆》(Context Engineering: Sessions & Memory) 白皮书。文中开篇指出,LLM模型本身是无状态的 (stateless)。如果要构建有状态的(stateful)和个性化的 AI,关键在于上下文工程。

来自主题: AI技术研报
6154 点击    2025-11-14 10:22
与DeepSeek-OCR不谋而合,NeurIPS论文提出让LLM像人一样读长文本

与DeepSeek-OCR不谋而合,NeurIPS论文提出让LLM像人一样读长文本

与DeepSeek-OCR不谋而合,NeurIPS论文提出让LLM像人一样读长文本

在处理短文本时,大语言模型(LLM)已经表现出惊人的理解和生成能力。但现实世界中的许多任务 —— 如长文档理解、复杂问答、检索增强生成(RAG)等 —— 都需要模型处理成千上万甚至几十万长度的上下文。

来自主题: AI技术研报
6206 点击    2025-11-10 15:12
40页的上下文工程ebook「深度拆解」|weaviate

40页的上下文工程ebook「深度拆解」|weaviate

40页的上下文工程ebook「深度拆解」|weaviate

如果你也在做 RAG 或智能体应用,大概经历过这些瞬间:文档切得太碎,答案失去上下文;切得太大,又召回不准;加了更多提示词,效果可能更不稳定。

来自主题: AI技术研报
6396 点击    2025-11-06 09:37
多智能体系统中,如何用向量数据库共享上下文?OpenAgents x Milvus

多智能体系统中,如何用向量数据库共享上下文?OpenAgents x Milvus

多智能体系统中,如何用向量数据库共享上下文?OpenAgents x Milvus

静态编排 VS 动态编排,谁是多agent系统最优解?通常来说,面对简单问题,采用react模式的单一agent就能搞定。可遇到复杂问题,单一agent就会立刻出现包括但不限于以下问题:串行执行效率低:无法同时完成并行的子步骤(如 “同时爬取 A、B 两个网站的数据”)。

来自主题: AI技术研报
7678 点击    2025-11-06 09:33