
AI解决132年数学难题!Transformer成功寻找新的李雅普诺夫函数,三体问题相关
AI解决132年数学难题!Transformer成功寻找新的李雅普诺夫函数,三体问题相关训练Transformer,用来解决132年的数学世纪难题!
训练Transformer,用来解决132年的数学世纪难题!
OpenAI ο1 模型的发布掀起了人们对 AI 推理过程的关注,甚至让现在的 AI 行业开始放弃卷越来越大的模型,而是开始针对推理过程进行优化了。今天我们介绍的这项来自 Meta FAIR 田渊栋团队的研究也是如此,其从人类认知理论中获得了灵感,提出了一种新型 Transformer 架构:Dualformer。
自从 Transformer 模型问世以来,试图挑战其在自然语言处理地位的挑战者层出不穷。 这次登场的选手,不仅要挑战 Transformer 的地位,还致敬了经典论文的名字。 再看这篇论文的作者列表,图灵奖得主、深度学习三巨头之一的 Yoshua Bengio 赫然在列。
是什么让纽约大学著名研究者谢赛宁三连呼喊「Representation matters」?他表示:「我们可能一直都在用错误的方法训练扩散模型。」即使对生成模型而言,表征也依然有用。基于此,他们提出了 REPA,即表征对齐技术,其能让「训练扩散 Transformer 变得比你想象的更简单。」
在当今的人工智能领域,Transformer 模型已成为解决诸多自然语言处理任务的核心。然而,Transformer 模型在处理长文本时常常遇到性能瓶颈。传统的位置编码方法,如绝对位置编码(APE)和相对位置编码(RPE),虽然在许多任务中表现良好,但其固定性限制了其在处理超长文本时的适应性和灵活性。
随着诺贝尔物理学奖颁给了「机器学习之父」Geoffrey Hinton,另一个借鉴物理学概念的模型架构也横空出世——微软清华团队的最新架构Differential Transformer,从注意力模块入手,实现了Transformer的核心能力提升。
Transformer 的强大实力已经在诸多大型语言模型(LLM)上得到了证明,但该架构远非完美,也有很多研究者致力于改进这一架构,比如机器之心曾报道过的 Reformer 和 Infini-Transformer。
Transformer计算,竟然直接优化到乘法运算了。MIT两位华人学者近期发表的一篇论文提出:Addition is All You Need,让LLM的能耗最高降低95%。
自去年以来,文本到图像生成模型取得了巨大进展,模型的架构从传统的基于UNet逐渐转变为基于Transformer的模型。
通用机器人模型,目前最大的障碍便是「异构性」。