混元OCR模型核心技术揭秘:统一框架、真端到端
混元OCR模型核心技术揭秘:统一框架、真端到端腾讯混元大模型团队正式发布并开源HunyuanOCR模型!这是一款商业级、开源且轻量(1B参数)的OCR专用视觉语言模型,模型采用原生ViT和轻量LLM结合的架构。目前,该模型在抱抱脸(Hugging Face)趋势榜排名前四,GitHub标星超过700,并在Day 0被vllm官方团队接入。
腾讯混元大模型团队正式发布并开源HunyuanOCR模型!这是一款商业级、开源且轻量(1B参数)的OCR专用视觉语言模型,模型采用原生ViT和轻量LLM结合的架构。目前,该模型在抱抱脸(Hugging Face)趋势榜排名前四,GitHub标星超过700,并在Day 0被vllm官方团队接入。
Google 前天发布了 Antigravity,一款号称“下一代 agentic 开发平台”的全新 IDE。官方宣传强调它能规划、执行、验证整个开发流程,似乎代表着 AI 编程进入了新的阶段。然而,最早一批上手使用的开发者却纷纷吐槽:任务跑着跑着就因“模型过载”中断,信用额度几十分钟内耗尽,连完整测试都难以完成,体验堪称“开局即崩”。
如果说过去一年里,AI 让开发者生产力翻倍,那么如今它也开始以同样的速度放大风险。 上周,Google 刚刚推出的基于 Gemini 的全新 AI 编码工具 Antigravity,上线不到 24 小时便被一名安全研究员攻破,指出它存在严重的安全Bug。
Google昨天伴随Gemini3.0pro一同发布了他们的AI IDE产品Antigravity《与Gemini 3.0一起发布的AI IDE「Antigravity」究竟有多厉害?》。其震撼性的三位一体全流程Agent体验让无数开发者直呼“Cursor危险了”。
在视觉处理任务中,Vision Transformers(ViTs)已发展成为主流架构。然而,近期研究表明,ViT 模型的密集特征中会出现部分与局部语义不一致的伪影(artifact),进而削弱模型在精细定位类任务中的性能表现。因此,如何在不耗费大量计算资源的前提下,保留 ViT 模型预训练核心信息并消除密集特征中的伪影?
就在几小时前,Gemini 3.0重磅发布。随着而来的还有其颠覆性的AI原生IDE产品——Antigravity,这不只是一个新工具那么简单。谷歌的这次发布,将三个核心开发工具,AI代理(Agent)、代码编辑器(Editor)和浏览器(Browser) 集成在了一起,构建了由AI驱动、从编码、研究、测试到验证的完整闭环,一举打通了自家的生态。
凌晨,谷歌终极杀器Gemini 3重磅来袭,一出手就是Pro顶配版,号称「史上最强推理+多模态+氛围编程」三合一AI战神!基准测试横扫全场,就连GPT-5.1也被斩于马下,AI的下一个时代开启。而且,一上来就是顶配的Gemini 3 Pro——迄今推理最强,多模态理解最强,以及「智能体」+「氛围编程」最强的模型!
美团LongCat团队发布了当前高度贴近真实生活场景、面向复杂问题的大模型智能体评测基准——VitaBench(Versatile Interactive Tasks Benchmark)。VitaBench以外卖点餐、餐厅就餐、旅游出行三大高频生活场景为典型载体,构建了一个包含66个工具的交互式评测环境,并设计了跨场景综合任务。
2 天前,国内最大的 AI 多模态模型社区之一的 LiblibAI 进行了一次大升级,正式推出了 2.0 版本。对许多创作者而言,这个平台并不陌生,LiblibAI 一直是国内开源绘画与 LoRA 文化的重要发源地,也常被称为中国版的 CivitAI (大家常说的 C 站)。
针对视觉 Transformer(ViT)因其固有 “低通滤波” 特性导致深度网络中细节信息丢失的问题,我们提出了一种即插即用、受电路理论启发的 频率动态注意力调制(FDAM)模块。它通过巧妙地 “反转” 注意力以生成高频补偿,并对特征频谱进行动态缩放,最终在几乎不增加计算成本的情况下,大幅提升了模型在分割、检测等密集预测任务上的性能,并取得了 SOTA 效果。