
在12个视频理解任务中,Mamba先打败了Transformer
在12个视频理解任务中,Mamba先打败了Transformer探索视频理解的新境界,Mamba 模型引领计算机视觉研究新潮流!传统架构的局限已被打破,状态空间模型 Mamba 以其在长序列处理上的独特优势,为视频理解领域带来了革命性的变革。
探索视频理解的新境界,Mamba 模型引领计算机视觉研究新潮流!传统架构的局限已被打破,状态空间模型 Mamba 以其在长序列处理上的独特优势,为视频理解领域带来了革命性的变革。
抛弃传统方法,只采用Transformer来解码真实场景!
视觉语言模型屡屡出现新突破,但ViT仍是图像编码器的首选网络结构。
从Llama 3到Phi-3,蹭着开源热乎劲儿,苹果也来搞事情了。
近年来,多模态大型语言模型(MLLM)在各个领域的应用取得了显著的成功。然而,作为许多下游任务的基础模型,当前的 MLLM 由众所周知的 Transformer 网络构成,这种网络具有较低效的二次计算复杂度。
Transformers 的二次复杂度和弱长度外推限制了它们扩展到长序列的能力,虽然存在线性注意力和状态空间模型等次二次解决方案
继Mamba之后,又一敢于挑战Transformer的架构诞生了!
Transformer 的重要性无需多言,目前也有很多研究团队致力于改进这种变革性技术,其中一个重要的改进方向是提升 Transformer 的效率,比如让其具备自适应计算能力,从而可以节省下不必要的计算。
提出图像生成新范式,从预测下一个token变成预测下一级分辨率,效果超越Sora核心组件Diffusion Transformer(DiT
通过这项技术,能使transformer大模型在有限的计算资源 条件下,处理无限长度的输入。