2026开年关键词:Self-Distillation,大模型真正走向「持续学习」
2026开年关键词:Self-Distillation,大模型真正走向「持续学习」2026 年刚拉开序幕,大模型(LLM)领域的研究者们似乎达成了一种默契。 当你翻开最近 arXiv 上最受关注的几篇论文,会发现一个高频出现的词汇:Self-Distillation。
2026 年刚拉开序幕,大模型(LLM)领域的研究者们似乎达成了一种默契。 当你翻开最近 arXiv 上最受关注的几篇论文,会发现一个高频出现的词汇:Self-Distillation。
当物体在滚动、滑动、被撞飞,机器人还在执行几百毫秒前的动作预测。对动态世界而言,这种延迟,往往意味着失败。
文本摘要作为自然语言处理(NLP)的核心任务,其质量评估通常需要兼顾一致性(Consistency)、连贯性(Coherence)、流畅性(Fluency)和相关性(Relevance)等多个维度。
驱动具身智能进入通用领域最大的问题在哪里?
随着视觉-语言模型(VLM)推理能力不断增强,一个隐蔽的问题逐渐浮现: 很多错误不是推理没做好,而是“看错了”。
在大模型驱动的 Agentic Search 日益常态化的背景下,真实环境中智能体 “如何发查询、如何改写、是否真正用上检索信息” 一直缺乏系统刻画与分析。
近年来,视频生成(Video Generation)与世界模型(World Models)已跃升为人工智能领域最炙手可热的焦点。从 Sora 到可灵(Kling),视频生成模型在运动连续性、物体交互与部分物理先验上逐渐表现出更强的「世界一致性」,让人们开始认真讨论:能否把视频生成从「逼真短片」推进到可用于推理、规划与控制的「通用世界模拟器」。
训练一个生成模型是很复杂的一件事儿。 从底层逻辑上来看,生成模型是一个逐步拟合的过程。与常见的判别类模型不同,判别类模型通常关注的是将单个样本映射到对应标签,而生成模型则关注从一个分布映射到另一个分布。
来自上海交通大学、清华大学、微软研究院、麻省理工学院(MIT)、上海 AI Lab、小红书、阿里巴巴、港科大(广州)等机构的研究团队,系统梳理了近年来大语言模型在数据准备流程中的角色变化,试图回答一个业界关心的问题:LLM 能否成为下一代数据管道的「智能语义中枢」,彻底重构数据准备的范式?
目前,人形机器人已经能在现实中跳舞、奔跑、甚至完成后空翻。但接下来更关键的问题是:这些系统能否在部署之后持续地进行强化学习 —— 在真实世界的反馈中变得更稳定、更可靠,并在分布不断变化的新环境里持续适应与改进?