小米给KV Cache减负80%!MiMo团队推出混合稀疏注意力架构
小米给KV Cache减负80%!MiMo团队推出混合稀疏注意力架构小米MiMo大模型团队,加入AI拜年战场——推出HySparse,一种面向Agent时代的混合稀疏注意力架构。
小米MiMo大模型团队,加入AI拜年战场——推出HySparse,一种面向Agent时代的混合稀疏注意力架构。
2025 年 1 月 20 日,DeepSeek 发布了推理大模型 DeepSeek-R1,在学术界和工业界引发了对大模型强化学习方法的广泛关注与研究热潮。 研究者发现,在数学推理等具有明确答案的任务
随着 AI 智能体(Agent)能力日益强大,其自主行为带来的安全风险也愈发复杂。现有安全工具往往只能给出「安全 / 不安全」的简单判断,无法告知我们风险的根源。为此,上海人工智能实验室正式开源 Ag
一直以来,神经网络的激活函数就像是 AI 引擎中的火花塞。从早期的 Sigmoid、Tanh,到后来统治业界的 ReLU,再到近年来的 GELU 和 Swish,每一次激活函数的演进都伴随着模型性能的提升。但长期以来,寻找最佳激活函数往往依赖于人类直觉或有限的搜索空间。
过去一年,LLM Agent几乎成为所有 AI 研究团队与工业界的共同方向。OpenAI在持续推进更强的推理与工具使用能力,Google DeepMind将推理显式建模为搜索问题,Anthropic则通过规范与自我批判提升模型可靠性。
近年来,Vision-Language Models(视觉 — 语言模型)在多模态理解任务中取得了显著进展,并逐渐成为通用人工智能的重要技术路线。然而,这类模型在实际应用中往往面临推理开销大、效率受限的问题,研究者通常依赖 visual token pruning 等策略降低计算成本,其中 attention 机制被广泛视为衡量视觉信息重要性的关键依据。
扩散语言模型(Diffusion Language Models, DLLMs)因其多种潜在的特性而备受关注,如能加速的非自回归并行生成特性,能直接起草编辑的特性,能数据增强的特性。然而,其模型能力往往落后于同等规模的强力自回归(AR)模型。
在大模型时代,从代码生成到数学推理,再到自主规划的 Agent 系统,强化学习几乎成了「最后一公里」的标准配置。
又一位大佬准备对现有 AI 技术范式开刀了。
近日,美团推出全新多模态统一大模型方案 STAR(STacked AutoRegressive Scheme for Unified Multimodal Learning),凭借创新的 "堆叠自回归架构 + 任务递进训练" 双核心设计,实现了 "理解能力不打折、生成能力达顶尖" 的双重突破。